Electronic Supplementary Information

Article "Synthesis, Structure and Electrochemical Performance of Ultra-High-Entropy Rare Earth Orthoferrite (UHE REO) for Overall Water Splitting (OWS)"

In this work, X-ray electron spectroscopy (XPS) was performed using an ESCALAB 250Xi spectrometer (Thermo Fisher Scientific, USA) with Al K α radiation. The obtained spectra were fitted using the Voigt fitting method via the Fityk software. The resulting data are shown in **Table S1** and **Fig. S1**.

 Table S1. Values of binding energy, spin-orbit splitting energy, and corresponding oxidation state

 of UHE REO's constituent elements

No	Flomonts	Orbitals	Binding energy	Spin-orbit splitting	Oxidation
J1≌	Liements	Orbitals	peaks, eV	energy, eV	state
1	Sc	2p _{3/2}	401	5	+3
		2p _{1/2}	406		
2	Y	3d _{5/2}	157	2	+3
		3d _{3/2}	159		
3	La	3d _{5/2}	834	17	+3
		$3d_{3/2}$	851		
4	Ce	3d _{5/2}	885	- 16	+4
		3d _{3/2}	901		
5	Pr	3d _{5/2}	932	- 18	+3
		3d _{3/2}	950		
6	Nd	3d _{5/2}	974	21	+3
		3d _{3/2}	995		
7	Sm	3d _{5/2}	1082	23	+3
		3d _{3/2}	1105		
8	Eu	3d _{5/2}	1132	32	+3
		$3d_{3/2}$	1164		
9	Gd	3d _{5/2}	1186	35	+3
		3d _{3/2}	1221		
10	Tb	3d _{5/2}	1246	- 28	+3
		3d _{3/2}	1274		
11	Dy	3d _{5/2}	1300	- 30	+3
		3d _{3/2}	1330		
12	Но	4d	161	-	+3
13	Er	4d	168	-	+3
14	Tm	4d	176	-	+3
15	Yb	4d	185	-	+3
16	Lu	4d _{5/2}	196	10	+3
		4d _{3/2}	206		

Fig. S1. XPS profiles of UHE REO's constituent elements: Sc 2p (a), Y 3d (b), La 3d (c), Ce 3d (d), Pr 3d (e), Nd 3d (f), Sm 3d (g), Eu 3d (h), Gd 3d (i), Tb 3d (j), Dy 3d (k), Ho 4d (l), Er 4d (m), Tm 4d (n), Yb 4d (o), Lu 4d (p), Fe 2p (q), and O 1s (r).

The characteristic values of binding energy (BE) peaks and spin-orbit (S-O) splitting energy of the compound's individual rare earth element are listed in **Table S1**. As can be seen, almost all rare earth metals in the UHE REO have a trivalent oxidation state [1–4]. However, there are some exceptions, such as the fact that the Ce element exists primarily in the +4-oxidation number [5]. Furthermore, for the Fe 2p XPS profile (see **Fig. S1-q**), the BE peaks centered at 710, 724 eV and 712, 725 eV belong to the oxidation states of Fe(II) and Fe(III), respectively [6]. For the O 1s XPS profile (**Fig. S1-r**), the BE peaks observed at 529, 530, and 531 eV can be attributed to lattice oxygen, defective oxygen, and surface-adsorbed oxygen, respectively [7,8].

Reference

- M.H. Joo, S.J. Park, S.-M. Hong, C.K. Rhee, D. Kim, Y. Sohn, Electrodeposition and Characterization of Lanthanide Elements on Carbon Sheets, Coatings. 11 (2021) 100. https://doi.org/10.3390/coatings11010100.
- [2] R. Rahman, J.P. Klesko, A. Dangerfield, M. Fang, J.-S.M. Lehn, C.L. Dezelah, R.K. Kanjolia, Y.J. Chabal, Mechanistic study of the atomic layer deposition of scandium oxide films using Sc(MeCp)₂(Me₂pz) and ozone, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 37 (2019). https://doi.org/10.1116/1.5059695.
- [3] L. Mariscal-Becerra, R. Vázquez-Arreguín, U. Balderas, S. Carmona-Téllez, H. Murrieta Sánchez, C. Falcony, Luminescent characteristics of layered yttrium oxide nano-phosphors doped with europium, J. Appl. Phys. 121 (2017). https://doi.org/10.1063/1.4979209.
- P. Misra, S.P. Pavunny, Y. Sharma, R.S. Katiyar, Resistive Switching and Current Conduction Mechanisms in Amorphous LaLuO₃ Thin Films Grown by Pulsed Laser Deposition, Integr. Ferroelectr. 157 (2014) 47–56. https://doi.org/10.1080/10584587.2014.911633.
- [5] A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya, H. Hahn, R. Djenadic,
 Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency, Dalt. Trans. 46 (2017) 12167–12176. https://doi.org/10.1039/C7DT02077E.
- [6] F. Han, L. Ma, Q. Sun, C. Lei, A. Lu, Rationally designed carbon-coated Fe₃O₄ coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries, Nano Res. 7 (2014) 1706– 1717. https://doi.org/10.1007/s12274-014-0531-y.
- [7] Y. Zhu, L. Zhang, B. Zhao, H. Chen, X. Liu, R. Zhao, X. Wang, J. Liu, Y. Chen, M. Liu, Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides, Adv. Funct. Mater. 29 (2019) 1–12. https://doi.org/10.1002/adfm.201901783.

[8] J. Tapia-P, J. Gallego, J.F. Espinal, Calcination Temperature Effect in Catalyst Reactivity for the CO SELOX Reaction Using Perovskite-like LaBO₃ (B: Mn, Fe, Co, Ni) Oxides, Catal. Letters. 151 (2021) 3690–3703. https://doi.org/10.1007/s10562-021-03601-z.