Supplementary Material

A high-entropy layered P2-type cathode with high stability for

sodium-ion batteries

Hongfeng Liu, ^a Yingshuai Wang, ^a Xiangyu Ding, ^a Yusong Wang, ^a Feng Wu, ^a Hongcai Gao^{a,b,c,*}

^a School of Materials Science and Engineering, Beijing Institute of Technology, Beijing

100081, P.R. China

^b Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019,

China

^c Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120.

P.R. China

*Corresponding author: <u>gaohc@bit.edu.cn</u> (Prof. Hongcai Gao)

	NLNMO	NLNBMMO-5%
a/Å	2.89885	2.91005
b/Å	2.89885	2.91005
c/Å	11.06831	11.11041
V/ Å ³	80.54	80.74
R _p (%)	3.22	4.52
R_{wp} (%)	8.07	7.01
Gof	1.57	1.49

Table S1: The refined parameters of NLNMO and NLNBMMO-5%

Table S2: Comparison of electrochemical performances of NLNMO, NLNBMMO-5% and

Sample	Initial discharge capacity	Capacity after cycling	Capacity
	(mA h g ⁻¹)	(mA h g ⁻¹)	retention
NLNMO	89.8 (1 C)	77 (1 C)	85.70%
	69.1 (1 C)	49.6 (5 C)	75.00%
NLNBMMO-	102.6 (1 C)	96.6 (1 C)	94.20%
5%	75.2 (5 C)	61.2 (5 C)	81.40%
NLNBMMO-	87.4 (1 C)	81.6 (1 C)	93.30%
10%	63.4 (5 C)	50.1 (5 C)	78.80%

NLNBMMO-10%	
-------------	--

Sample	Charge process	Discharge process
NLNMO	Y=0.00615x-2.707E- 5	Y=-0.00566x+2.845E- 5
NLNBMMO- 5%	Y=0.00673x-3.153E- 5	Y=-0.00542x+2.504 E-5

 Table S3:
 The equation relationship between peak current and scan of NLNMO and NLNBMMO-5%

Fig. S1: (a) The Be 1s XPS spectra for NLNMO and NLNBMMO-5% (b) The Mg 1s XPS spectra for

NLNMO and NLNBMMO-5%

Fig. S2: The SEM image of NLNMO

Fig. S3: (a) Galvanostatic charge-discharge profiles at 0.1 C of NLNBMMO-10% during the first 5 cycles. (b) Galvanostatic charge-discharge profiles at 1 C of NLNBMMO-10% for the 1st, 10st, 20st, 30st, and 50st cycle.

Fig. S4: Schematic illustration of selected steps of GITT test for NNMO-ZM with a charge/discharge time of 30 min.

Based on the GITT measurement, the Na⁺ diffusion coefficient can be calculated by Equation S1:

$$D_{Na+} = \frac{4}{\pi \tau} \left(\frac{m_B V_M}{M_B S} \right)^2 \left[\frac{\Delta E_s}{\Delta E_t} \right]^2$$

where D_{Na^+} (cm² s⁻¹) represents the Na⁺ diffusion coefficient, V_M (cm³ mol⁻¹), m_B, and M_B are the molar volume, weight, and molar weight of the active materials, respectively, S and τ (s) denote the surface area of the electrode and the testing time in each step, and ΔE_s and ΔE_t are the quasi-equilibrium potential and the change in cell voltage E during the current pulse, respectively.¹⁻⁴

Fig. S5: (a-c) GITT curves of NLNMO, NLNBMMO-5% and NLNBMMO-10%.

Reference

- 1. Y. Wang, Q. Wang, X. Ding, M. Wang, Y. Xin and H. Gao, *Applied Surface Science*, 2022, **601**, 154218.
- 2. Q. Wang, X. Ding, J. Li, H. Jin and H. Gao, *Chemical Engineering Journal*, 2022, **448**, 137740.
- 3. M. Wang, Q. Wang, X. Ding, Y. Wang, Y. Xin, P. Singh, F. Wu and H. Gao, *Interdisciplinary Materials*, 2022, **1**, 373-395.
- 4. Q. Wang, C. Ling, J. Li, H. Gao, Z. Wang and H. Jin, *Chemical Engineering Journal*, 2021, **425**, 130680.