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Note S1 Overview on recent applications of objective reduction methods 

In Table S1, we give an overview on recent applications of objective reduction methods on environmental objectives. 
Approximately 70% of the case studies use the dominance-based objective reduction method by Guillén-Gosálbez 
et al.1 that is based on the work of Brockhoff and Zitzler.2 Correlation-based principal component analysis (PCA) is 
used by 33%, whereas 6% rely on other methods for objective reduction. 

Table S1: Recent studies that applied objective reduction methods on environmental objectives. PCA: principal component 

analysis. Related to the Introduction. 

Author Year 
Objective reduction method 

Application 
Dominance PCA Other 

Qin et al.3 2020  X  Energy systems 
Chu et al.4 2018  X  Tidal flat reclamation 
Pérez-Gallardo et al.5 2018  X  Photovoltaic grid-connected systems 
Vázquez et al.6 2018 X X  Chemical supply chains 

Vázquez et al.6 2018 X X  Construction of a building 
Vázquez et al.7 2018 X X  Safety of a distillation train 
Vázquez et al.8 2018 X   Chemical supply chains 
Vázquez et al.8 2018 X   Construction of a building 

Hennen et al.9 2017 X   Energy system 
Wheeler et al.10 2017   X Bioethanol supply chains 
Carreras et al.11 2016 X   Construction of a building 
Copado-Méndez et al.12 2016 X   Bioethanol supply chains 

Copado-Méndez et al.12 2016 X   Hydrogen supply chains 
Steinmann et al.13 2016  X  Product life cycles 
Kostin et al.14 2015 X   Bioethanol supply chains 
Kostin et al.14 2015 X   Hydrogen supply chains 

Postels et al.15 2015 X   Energy system 
Copado-Méndez et al.16 2014 X   Hydrogen supply chains 
Copado-Méndez et al.16 2014 X   Metabolic networks 
Čuček et al.17 2014   X Biomass and bioenergy supply chains 

Vaskan et al.18 2014 X   Utility plants 
Antipova et al.19 2013 X   Reverse osmosis desalination plant 
Oliva et al.20 2013 X   Chemical supply chains 
Oliva et al.20 2013 X   Bioethanol supply chains 

Oliva et al.20 2013 X   Hydrogen supply chains 
Brunet et al.21 2012  X  L-lysine production 
Kostin et al.22 2012 X   Bioethanol supply chains 
Pozo et al.23 2012  X  Chemical supply chains 

Sabio et al.24 2012  X  Hydrogen supply chains 
Vaskan et al.25 2012 X   Heat exchanger 
Guillén-Gosálbez et al.1 2011 X   Heat exchanger 
Guillén-Gosálbez et al.1 2011 X   Chemical supply chains 
Gutiérrez et al.26 2010  X  Domestic appliances 
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Note S2 Model description of integrated process and fuel design 

Here, we briefly summarize the environmental and economical objective functions of König et al.27,28 In contrast to 

König et al., we write the environmental objective in a generalized form for an environmental impact (EI) instead of 

specifically for global warming impact. In Table S2, we list the 47 fuel species considered in this study. 

The 𝑚th environmental impact per functional unit 𝐸𝐼𝑚 is calculated by dividing the total environmental impact 𝐸𝐼total,𝑚 

by a fixed annual fuel production of 𝛼 = 2.77 ∙ 1012 kJ

a
. This annual fuel production relates to the energy content of 

100,000 tons of ethanol per year, in line with previous studies.27–29 

𝐸𝐼𝑚 =
𝐸𝐼total,𝑚

𝛼
(S1) 

The total environmental impact 𝐸𝐼total,𝑚 comprises the impacts due to the supply of utilities 𝐸𝐼util,𝑚 and feedstocks 

𝐸𝐼feedstock,𝑚: 

𝐸𝐼total,𝑚 = 𝐸𝐼util,𝑚 + 𝐸𝐼feedstock,𝑚. (S2) 

Environmental impacts due to utility supply 𝐸𝐼util,𝑚 are calculated by multiplying the energy demands of reactions 

𝐸reac,𝑖 and separation sequences 𝐸sep,𝑖 with the specific environmental impact factor 𝑒𝑖𝑖,𝑚 of the 𝑖th utility. Considered 

utilities are electricity, process heat, cooling, and refrigeration. 

𝐸𝐼util,𝑚 = ∑ (𝐸reac,𝑖 + 𝐸sep,𝑖) ∙ 𝑒𝑖𝑖,𝑚

𝑖∈𝑁utils

(S3) 

Environmental impacts induced by feedstock supply 𝐸𝐼feedstock,𝑚 are calculated as the product of the feedstock fluxes 

𝑓𝑗, their molar masses 𝑀𝑗, and the specific environmental impact factor 𝑒𝑖𝑗,𝑚 of the 𝑗th feedstock. As feedstocks, we 

consider biomass, carbon dioxide, and hydrogen but also solvents (see Table S4). 

𝐸𝐼feedstock,𝑚 = ∑ 𝑓𝑗𝑀𝑗𝑒𝑖𝑗,𝑚

𝑗∈𝑁feedstock

(S4) 

As economical objective, the production cost per functional unit 𝐶 is evaluated by dividing the total annualized 

production cost 𝐶total by the fixed annual fuel production 𝛼: 

𝐶 =
𝐶total

𝛼
. (S5) 

The total annualized production cost 𝐶total is determined by summing up the annualized costs due to investments 

𝐶invest, utilities 𝐶util, feedstocks 𝐶feedstock, and wastes 𝐶waste: 

𝐶total = 𝐶invest + 𝐶util + 𝐶feedstock + 𝐶waste. (S6) 

Annualized investment costs 𝐶invest are calculated from the investment costs 𝐼𝐶, the interest rate 𝑖𝑟, and the project 

lifetime 𝑎: 

𝐶invest =
𝑖𝑟

1 − (1 + 𝑖𝑟)−𝑎
∙ 𝐼𝐶. (S7) 

The investment costs 𝐼𝐶 are derived from the amount of transferred energy in reactions 𝐸reac,transfer,𝑖 and separation 

sequences 𝐸sep,transfer,𝑖 as well as the chemical engineering plant cost index (CEPCI) of the years 1993 and 2016, 

according to an empirical investment cost correlation. 

𝐼𝐶 =
CEPCI2016

CEPCI1993
∙ 2.9 ∙ (𝐸transfer duty)

0.55
(S8) 
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𝐸transfer duty = ∑(𝐸reac,transfer,𝑖 + 𝐸sep,transfer,𝑖)

𝑖

(S9) 

Utility costs 𝐶util are determined by multiplying the energy demands of reactions 𝐸reac,𝑖 and separation sequences 

𝐸sep,𝑖 with the specific utility price parameter 𝑃𝑖: 

𝐶util = ∑ (𝐸reac,𝑖 + 𝐸sep,𝑖) ∙ 𝑃𝑖

𝑖∈𝑁utils

. (S10) 

Feedstock costs 𝐶feedstock are the product of the feedstock fluxes 𝑓𝑗, their molar masses 𝑀𝑗, and the specific feedstock 

price parameter 𝑃𝑗: 

𝐶feedstock = ∑ 𝑓𝑗𝑀𝑗𝑃𝑗

𝑗∈𝑁feedstock

. (S11) 

Waste costs 𝐶waste are estimated by multiplying the fluxes of wastes 𝑤𝑘 and byproducts 𝑏𝑘 with their molar masses 

𝑀𝑘 and a generic waste price 𝑃waste for liquid and solid wastes: 

𝐶waste = ∑ (𝑤𝑘 + 𝑏𝑘)𝑀𝑘𝑃waste

𝑘∈𝑁waste

. (S12) 
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Table S2: Fuel species considered in this study, adapted from König et al.29 

Fuel species 

alcohols 

 methanol 

 ethanol 

 2-propanol 

 1-butanol 

 iso-butanol 

 2-butanol 

 3-butanol 

 n-pentanol 

 iso-pentanol 

 2-pentanol 

 cyclopentanol 

aldehydes 

 iso-butyraldehyde 

alkanes 

 pentane 

 hexane 

 cyclopentane 

 methylcyclohexane 

alkenes 

 2-methyl-2-butene 

 pentene 

 hexene 

aromatics 

 toluene 

ethers 

 diisopropyl ether 

 
 

Fuel species (continued) 

esters 

 methyl acetate 

 ethyl acetate 

 propyl acetate 

 isopropyl acetate 

 butyl acetate 

 isobutyl acetate 

 ethyl propionate 

 methyl butyrate 

 ethyl butyrate 

 methyl isobutyrate 

 ethyl isobutyrate 

 ethyl lactate 

 ethyl valerate 

 γ-valerolactone 

furans and tetrahydrofurans 

 tetrahydrofuran 

 2-methyltetrahydrofuran 

ketones 

 propanone 

 2-butanone 

 3-methyl-2-butanone 

 2-pentanone 

 3-pentanone 

 2,4-dimethyl-3-pentanone 

 cyclopentanone 

multiple oxygen functionalities 

 tetrahydrofurfurylalcohol 

 ethyl levulinate 

 butyl levulinate 
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Note S3 Exemplary minimization problem of objective reduction 

The exemplary minimization problem of objective reduction has four objectives (𝐹 = (f1, f2, f3, f4)T) and three Pareto-

optimal solutions since no solution is dominated by any of the others (Figure S1A). If objective f4 is omitted, all 

solutions are still non-dominated in the reduced objective space (𝐹1
′ = (f1, f2, f3)T), i.e., the Pareto dominance 

structure is preserved (Figure S1B). In this case, no error is induced by objective reduction because objective f4 is 

redundant. However, if additionally objective f3 is omitted (𝐹2
′ = (f1, f2)T), solution s2 is dominated by solution s3 

(Figure S1C) although it was not dominated in the full objective space 𝐹. Consequently, solution s2 would be lost in 
𝐹2

′ since it is no longer Pareto-optimal. Thus, the Pareto dominance structure of the full objective space is changed 

due to objective reduction. The so-called δ-error quantifies this change as the maximum amount that has to be 
subtracted from a solution, which is dominating another solution in a reduced objective space, to render this solution 
also dominating the other solution in the full objective space. In this exemplary minimization problem, the δ-error is 

0.5: The value of solution s3 regarding objective f3 has to be subtracted by 0.5 such that solution s3 would not only 
dominate solution s2 in the reduced objective space 𝐹2

′ but also in the full objective space 𝐹. 

 

 

Figure S1: Dominance structures of (A) the full objective set 𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4)𝑇, (B) the reduced objective subset 𝐹1
′ = (𝑓1, 𝑓2, 𝑓3)𝑇, 

and (C) the reduced objective subset 𝐹2
′ = (𝑓1 , 𝑓2)𝑇, for an exemplary minimization problem. In (A) and (B), all solutions are Pareto-

optimal while solution s3 dominates solution s2 in (C). 
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Note S4 Comparison with previous fuel design studies 

In this study, we partly adjust the economic and environmental input data of utilities and feedstocks based on the 

study of König et al.29 To analyze the implications of these adjustments, we compare the Pareto fronts for GWI and 

production cost using the input data of König et al. with using the input data of our ‘today’ scenario (Figure S2). 

 

Figure S2: Pareto front with feedstock and utility data of König et al.29 (grey) or the ‘today’ scenario of this study (blue). In König 

et al., the KEAA blend is a Pareto-optimal solution (square), whereas the KEAA blend is near-optimal when evaluated with this 
study’s ‘today’ scenario (cross). Noteworthy, the most-promising solution of the ‘today’ scenario (circle) is also a KEAA blend but 
with slight changes in fuel composition. 

Overall, we find similar trends using the input data of the ‘today’ scenario or König et al.29 With our ‘today’ scenario, 

GWI values are slightly greater while production cost is almost equal except for the GWI-optimal solution: GWI scores 

increase by 9 to 10 kg CO2 eq. GJ-1, mainly due to changes in the modeled steam and refrigeration supply. The 

KEAA blend, a Pareto-optimal solution of König et al., is a near-optimal solution when evaluated with this study’s 

‘today’ scenario (cross, Figure S2). Noteworthy, the Pareto-optimal solution representing the most-promising 

compromise of GWI and production cost in the ‘today’ scenario (circle, Figure S2) is also a KEAA blend with the 

same fuel components but slight changes in composition compared to the KEAA blend identified by König et al. 

(Table S3). 

Table S3: Molar composition of the KEAA blend of König et al.29 and the most-promising comprise solution of the ‘today’ scenario 

(circle, Figure S2). 

Blend component KEAA blend 
Most-promising compromise 

solution of the ‘today’ scenario 

Ethanol 0.25 0.24 

Methanol 0.02 0.10 

Ethyl acetate 0.13 0.12 

Methyl isopropyl ketone 0.40 0.38 

Methyl acetate 0.16 0.13 

Pentane 0.04 0.03 
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Note S5 Life cycle assessment: inventory data 

The used LCA inventory datasets are listed for all feedstocks, utilities, solvents, and others in Table S4. Note that 

the LCA database ecoinvent does not provide inventory for each solvent. We thus list only those solvents for which 

datasets are available. 

Table S4: LCA datasets of the life cycle inventory. 

Flow Unit Dataset a Reference Year 

Feedstocks     
Carbon dioxide kg Capture at steel plant von der Assen et al.30 2016 
  Direct air capture b Deutz et al.31 2021 
Biomass kg DE: hardwood forestry, beech, sustainable forest 

management 
ecoinvent 3.8, cut-off32 2021 

Hydrogen kg Water electrolysis, polymer electrolyte membrane Reuss et al.33 2017 

Utilities     
Electricity MJ DE: market for electricity, medium voltage ecoinvent 3.8, cut-off32 2021 
  DE: electricity production, wind, 1-3MW turbine, 

onshore 
ecoinvent 3.8, cut-off32 2021 

Heat MJ RER: steam production, as energy carrier, in 
chemical industry 

ecoinvent 3.8, cut-off32 2021 

  Electrode vessel, power-to-heat efficiency of 95% Müller et al.34 2020 
Cooling water kg DE: market for water, decarbonised ecoinvent 3.8, cut-off32 2021 
Refrigeration MJ Cryogenic cooler Ladner et al.35 2011 

Solvents c and others    
Dimethyl 
sulfoxide 

kg RER: dimethyl sulfoxide production ecoinvent 3.8, cut-off32 2021 

γ-butyrolactone kg RER: dehydrogenation of butan-1,4-diol ecoinvent 3.8, cut-off32 2021 
1,4-dioxane kg RER: dioxane production ecoinvent 3.8, cut-off32 2021 
Helium kg GLO: helium purification ecoinvent 3.8, cut-off32 2021 
Benzene kg RER: benzene production ecoinvent 3.8, cut-off32 2021 
1,2-dichloro-
ethane 

kg RER: ethylene dichloride production ecoinvent 3.8, cut-off32 2021 

Chlorobenzene kg RER: benzene chlorination ecoinvent 3.8, cut-off32 2021 
Dichloro-
methane 

kg RER: dichloromethane production ecoinvent 3.8, cut-off32 2021 

Chloroform kg RER: trichloromethane production ecoinvent 3.8, cut-off32 2021 
Cyclohexane kg RER: cyclohexane production ecoinvent 3.8, cut-off32 2021 
Gasoline kg RER: petrol production, low-sulfur d ecoinvent 3.8, cut-off32 2021 

a Abbreviations in ecoinvent dataset names: DE: Germany; RER: Europe.  
b Energy requirements are taken from the predicted energy targets for a temperature-swing adsorption system.31 
 Heat is provided by heat pumps with a coefficient of performance (COP) of 3.28. The COP is averaged from heat 
 pumps built since 2006 with condenser temperatures of about 90 °C and evaporator temperatures between 
 9-15 °C, according to David et al.36 
c Solvents without available ecoinvent datasets are excluded from this list. 
d For gasoline, we assume a carbon content of 0.83 kg of carbon and a lower heating value of 41.3 MJ per kg to 
 model combustion-induced CO2 emissions. 
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Note S6 Influence of the number of Pareto points used as input for 

objective reduction 

In Figure S3, we evaluate the influence of the number of Pareto points used as input for objective reduction exemplary 

for the ‘today’ scenario and normalization variant N2. For this analysis, we doubled the number of Pareto points used 

for objective reduction by increasing the resolution from four (N2) to eight (N2*) partitions per objective pair during 

Step 1 of the solution procedure (see Section 3.2). Overall, the influence of the number of Pareto points on the δ-

error is negligible, with the highest increase observed for twelve omitted objectives (Figure S3). Notable, we still find 

the same reduced objective subsets 𝐹OB=14
N2∗,today

= 𝐹OB=14
N2,today

= (C, LU, RUm)T for both N2* and N2. Consequently, in our 

case study, the objective reduction approach is not affected by this increase of the number of Pareto points. However, 

the computation time increases substantially by factor 2.3 (Table S5).  

 

Figure S3: The δ-error 𝛿𝑟𝑒𝑙 as function of the number of omitted objectives for normalization variant N2 in the ‘today’ scenario. To 

analyze the influence of the number of Pareto points used as input for objective reduction, N2* depicts the results for twice as 
many Pareto points compared to N2 (see Section 3.2). The threshold 𝛿∗ of 0.1 is introduced to identify small objective subsets 
with acceptable δ-error. 

 

Table S5: Comparison of the number of partitions and generated solutions as well as the computation time. 

Variant Number of partitions Initial solutions 𝑺𝐢𝐧𝐢𝐭𝐢𝐚𝐥 Filtered solutions 𝑺𝐟𝐢𝐥𝐭𝐞𝐫𝐞𝐝 
Computation time of 

objection reduction / h 

N2 4 544 156 13.97 

N2* 8 1087 264 32.67 
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Note S7 Correlation matrices 

In Table S10 and Table S11, we present the correlation matrices of the initial Pareto-optimal solutions 𝑆filtered
today

 and 

𝑆filtered
future  for the ‘today’ and ‘future’ scenario, respectively. In the ‘today’ scenario, land use (LU) is most conflicting with 

all other objectives while production cost (C) and freshwater eutrophication (Efw) show, on average, the weakest 

correlation with the other objectives. In the ‘future’ scenario, LU and Efw are both conflicting with the other objectives, 

whereas C shows, again, only a slight correlation. The correlation matrices indicate correlation between all other 

objectives. 
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Note S8 Optimal process and fuel designs for the reduced objective subset 

In Figure S4, we present the single-objective minima of the Pareto-optimal solutions generated with the reduced 

objective subsets. Figure S5 presents Pareto-optimal process and fuel designs of bio-fuels generated in the ‘future’ 

scenario that yield lower scores than the benchmark KEAA in all objectives. 

     

 

Figure S4: Pareto-optimal process and fuel designs regarding the reduced objective space of the (A) ‘today’ and (B) 
‘future’ scenario. For each of these objectives, the optimum is shown, i.e., the design with minimum production 
cost (C), resource use of minerals and metals (RUm), and land use (LU). 

 

 

Figure S5: Pareto-optimal process and fuel designs of bio-fuels (green) generated for the ‘future’ scenario and 
evaluated in the full objective space. All of the depicted bio-fuels yield lower scores than the KEAA benchmark 
(dotted) in all objectives. Each objective is normalized according to normalization variant N1. Note that, for 
consistency, we recalculated the results of the KEAA blend of previous studies with our ‘future’ scenario. 
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Note S9 Contribution analysis 

In Figure S6 to Figure S22, we present violin plots for relative contribution analyses regarding all 17 objectives. For 

these contribution analyses, we clustered the generated Pareto-optimal solutions of the reduced objective subsets 

by fuel type (bio-, e-, and bio-hybrid-fuel) for each scenario. 

 

 

Figure S6: Violin plot for the relative contribution analysis regarding production cost of bio-, e-, and bio-hybrid fuels in the ‘today’ 

and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are considered 
that have been generated for the reduced objective subset. 
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Figure S7: Violin plot for the relative contribution analysis regarding resource use of minerals and metals of bio-, e-, and bio-

hybrid fuels in the ‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and 
scenario are considered that have been generated for the reduced objective subset. 
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Figure S8: Violin plot for the relative contribution analysis regarding land use of bio-, e-, and bio-hybrid fuels in the ‘today’ and 

‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are considered that 
have been generated for the reduced objective subset. 
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Figure S9: Violin plot for the relative contribution analysis regarding global warming impact of bio-, e-, and bio-hybrid fuels in the 

‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are 
considered that have been generated for the reduced objective subset. 
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Figure S10: Violin plot for the relative contribution analysis regarding ozone depletion of bio-, e-, and bio-hybrid fuels in the ‘today’ 

and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are considered 
that have been generated for the reduced objective subset. 
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Figure S11: Violin plot for the relative contribution analysis regarding particulate matter of bio-, e-, and bio-hybrid fuels in the 

‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are 
considered that have been generated for the reduced objective subset. 
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Figure S12: Violin plot for the relative contribution analysis regarding acidification of bio-, e-, and bio-hybrid fuels in the ‘today’ 

and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are considered 
that have been generated for the reduced objective subset. 
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Figure S13: Violin plot for the relative contribution analysis regarding freshwater eutrophication of bio-, e-, and bio-hybrid fuels in 

the ‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are 
considered that have been generated for the reduced objective subset. 
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Figure S14: Violin plot for the relative contribution analysis regarding marine eutrophication of bio-, e-, and bio-hybrid fuels in the 

‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are 
considered that have been generated for the reduced objective subset. 
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Figure S15: Violin plot for the relative contribution analysis regarding terrestrial eutrophication of bio-, e-, and bio-hybrid fuels in 

the ‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are 
considered that have been generated for the reduced objective subset. 
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Figure S16: Violin plot for the relative contribution analysis regarding ionizing radiation of bio-, e-, and bio-hybrid fuels in the 

‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are 
considered that have been generated for the reduced objective subset. 
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Figure S17: Violin plot for the relative contribution analysis regarding photochemical ozone formation of bio-, e-, and bio-hybrid 

fuels in the ‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and 
scenario are considered that have been generated for the reduced objective subset. 
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Figure S18: Violin plot for the relative contribution analysis regarding ecotoxicity of bio-, e-, and bio-hybrid fuels in the ‘today’ and 

‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are considered that 
have been generated for the reduced objective subset. 
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Figure S19: Violin plot for the relative contribution analysis regarding carcinogenic human toxicity of bio-, e-, and bio-hybrid fuels 

in the ‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario 
are considered that have been generated for the reduced objective subset. 
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Figure S20: Violin plot for the relative contribution analysis regarding non-carcinogenic human toxicity of bio-, e-, and bio-hybrid 

fuels in the ‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and 
scenario are considered that have been generated for the reduced objective subset. 
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Figure S21: Violin plot for the relative contribution analysis regarding resource use of energy carriers of bio-, e-, and bio-hybrid 

fuels in the ‘today’ and ‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and 
scenario are considered that have been generated for the reduced objective subset. 
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Figure S22: Violin plot for the relative contribution analysis regarding water use of bio-, e-, and bio-hybrid fuels in the ‘today’ and 

‘future’ scenario. For each subfigure, all Pareto-optimal solutions of the corresponding fuel type and scenario are considered that 
have been generated for the reduced objective subset. 
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Note S10 Composition of Pareto-optimal bio-hybrid fuels 

In Figure S23, we show the molar fuel composition of all generated Pareto-optimal bio-hybrid fuels as violin plot. For 

comparison, we also present the molar composition of the KEAA blend of previous studies.29 

 

Figure S23: Violin plot for the molar composition of all generated Pareto-optimal bio-hybrid fuels. For comparison, the molar 

composition of the KEAA blend of previous studies is shown as crosses.29 MTHF: methyltetrahydrofuran. 
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