## Z-scheme water splitting utilizing CuLi<sub>1/3</sub>Ti<sub>2/3</sub>O<sub>2</sub> as a hydrogen-evolving photocatalyst with photo-response up to 600 nm

Shunya Yoshino,<sup>a</sup> Tanya Kurutach,<sup>a,b</sup> Qingshan Liu,<sup>a,b</sup> Toshiki Yamanaka,<sup>a,b</sup> Shunsuke Nozawa,<sup>c</sup> Makoto Kobayashi,<sup>d</sup> Hiromu Kumagai<sup>e</sup> and Hideki Kato<sup>a</sup>\*

<sup>a</sup>Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.

<sup>b</sup>Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.

<sup>c</sup>Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan.

<sup>d</sup>Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan.

<sup>e</sup>Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.

Corresponding E-mail: hideki.kato.e2@tohoku.ac.jp



Fig. S1 SEM images of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> before and after the pot-mill treatment.



**Fig. S2** (a) XRD patterns and (b) UV-vis spectra of CLTO prepared at 600 and 700 °C. Reference patterns of hexagonal and trigonal CLTO were simulated from structure models of CuGaO<sub>2</sub> modified with composition and lattice constants of CLTO.



Fig. S3 SEM images of CLTO prepared at 600 and 700 °C.



Fig. S4 Sacrificial H<sub>2</sub> evolution on Ru(0.5 wt%)/CLTO and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> from an aqueous solution containing 0.1 M Na<sub>2</sub>S and 0.5 M Na<sub>2</sub>SO<sub>3</sub>. Photocatalyst: 0.3 g; light source: 300 W Xe lamp ( $\lambda > 420$  nm).



**Fig. S5** Water formation over Ru/CLTO and Cr<sub>2</sub>O<sub>3</sub>/M/CLTO (M: Rh, Pd and Pt) in the dark. Catalyst: 0.05 g; H<sub>2</sub>: 10 kPa; O<sub>2</sub>: 5 kPa.



**Fig. S6** Influences of Cr<sub>2</sub>O<sub>3</sub> modification of Ru/CLTO upon Z-WS by Ru/CLTO-BiVO<sub>4</sub>-Co(bpy)<sub>3</sub>SO<sub>4</sub> system. Photocatalyst: 0.05 g each; reactant solution: 0.1 mM Co(bpy)<sub>3</sub>SO<sub>4</sub>, 160 mL; light source: 300 W Xe lamp ( $\lambda > 420$  nm).



**Fig. S7** Influences of Cr<sub>2</sub>O<sub>3</sub> modification of Ru/CLTO upon H<sub>2</sub> evolution from a Co(bpy)<sub>3</sub>SO<sub>4</sub> solution. Photocatalyst: 0.1 g; reactant solution: 0.5 mM Co(bpy)<sub>3</sub>SO<sub>4</sub>, 160 mL; light source: 300 W Xe lamp ( $\lambda > 420$  nm).



Fig S8. Current–potential curves of FTO and  $Cr_2O_3/FTO$  electrodes measured in a solution containing 0.1 M K<sub>2</sub>SO<sub>4</sub> and 0.1 mM Co(bpy)<sub>3</sub>SO<sub>4</sub> under Ar.



Fig. S9 Water formation over Ru/CLTO in the dark. Catalyst: 0.05 g; H<sub>2</sub>: 10 kPa; O<sub>2</sub>: 5 kPa.



**Fig. S10** Influences of Ru amounts upon Z-WS by the  $Cr_2O_3/Ru(100\% \text{ MeOH})/CLTO-BiVO_4-Co(bpy)_3SO_4$  system. Photocatalyst: 0.05 g each; reactant solution: 0.1 mM Co(bpy)\_3SO\_4, 160 mL; light source: 300 W Xe lamp ( $\lambda > 420 \text{ nm}$ ).



**Fig. S11** XRD patterns of Ru/CLTO prepared by an impregnation method with different heattreatment conditions.



**Fig. S12** SEM images of Ru/CLTO prepared by the impregnation method with different heat-treatment conditions.



**Fig. S13** Photocatalytic Z-WS using Cr<sub>2</sub>O<sub>3</sub>/Ru/CLTO prepared via the impregnation method with different heat treatment conditions. Photocatalyst: 0.05 g each; reactant solution: 0.1 mM Co(bpy)<sub>3</sub>SO<sub>4</sub>, 160 mL; light source: 300 W Xe lamp ( $\lambda > 420$  nm).



Fig. S14 XPS at Cu 2p of CLTO samples after photoirradiation including Z-WS.



Fig. S15 XRD patterns of CLTO samples after photoirradiation including Z-WS.



**Fig. S16** Z-WS using the Ru/SrTiO<sub>3</sub>:Rh-BiVO<sub>4</sub>-Co(bpy)<sub>3</sub>SO<sub>4</sub> system. Photocatalyst: 0.05 g each; reactant solution: 0.5 mM Co(bpy)<sub>3</sub>SO<sub>4</sub>, 160 mL; light source: 300 W Xe lamp ( $\lambda > 420$  nm).



**Fig. S17** Influence of O<sub>2</sub> upon H<sub>2</sub> evolution caused by water splitting using the  $Cr_2O_3/Ru/CLTO-BiVO_4-Co(bpy)_3SO_4$  system. Photocatalyst: 0.05 g each; reactant solution: 0.1 mM Co(bpy)\_3SO\_4, 160 mL; light source: 300 W Xe lamp ( $\lambda > 420$  nm). Only H<sub>2</sub> evolution is displayed because O<sub>2</sub> evolution was not detectable in the reaction under O<sub>2</sub> due to the quite large basic signal.