Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Photocatalytic CO₂ Reduction to Methanol Integrated with the Oxidative

Coupling of Thiols to S-X (X=S, C) bond formation over Fe₃O₄/BiVO₄ Composite

Nitish Saini^{a,b}, Sandhya Saini^{a,b}, Santanu Majumder,^{c*}Kyra Sedransk Campbell,^d Suman L

Jain^{a*}

 ^aChemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India
^bAcademy of Scientific and Innovative Research, Ghaziabad- 201002, India
^cFaculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK
^dDepartment of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK *Email: suman@iip.res.in; smajumder@bournemouth.ac.uk

Table	of	contents:
-------	----	-----------

Page No

1.	TGA/DTG analysis (Figure S1)	.S2
2.	XRD of Spent photocatalyst FBV-2 (Figure S2)	.S2
3.	GC-MS spectra of disulfides (Figure S3- S22)	S3-S13
4.	Reference	S14)

TG-DTA of the photocatalyst

The thermal stability of the materials i.e., Fe₃O₄ and FBV-2 was determined by using thermogravimetric and derivative thermogravimetric (TGA/DTG) analysis in the temperature range 30 °C to 800 °C under N₂ environment (Figure 1). In Fe₃O₄, the first weight loss (~6 wt%) below 200 °C is observed due to the evaporation of moisture or other volatile organic moieties. The second weight loss (~10 wt%) at temperature 463 °C is attributed to the phase transition from Fe₃O₄ to thermodynamically stable FeO state.¹ After that the material remains stable upto 800 °C. Similarly, in FBV-2, the first weight loss below 200 °C is attributed to the evaporation of moisture or volatile organic moieties. The second weight or volatile organic moieties. The second weight loss to the first weight loss below 200 °C is attributed to the phase transition from Fe₃O₄ to thermodynamically stable FeO state.¹ After that the material remains stable upto 800 °C. Similarly, in FBV-2, the first weight loss below 200 °C is attributed to the evaporation of moisture or volatile organic moieties. The second weight loss at 425 °C is related to the Fe-O formation from Fe₃O₄/BiVO₄. The third weight loss at 625 °C is due to the decomposition of the constituted components of photocatalyst (FBV-2) into their oxide forms. After that the material remains stable upto 800 °C.

Figure S1: TG/DTA of photocatalyst Fe3O4 and FBV-2

Figure S2: XRD of Fresh and spent FBV-2 for comparison

GC-MS of the products (disulfides)

Figure S3. GC Spectra of 1,2-diphenyldisulfane

Figure S4. Mass Spectra of 1,2-diphenyldisulfane

Figure S5.GC Spectra of 1,2-di-p-tolyldisulfane

Figure S6. Mass Spectra of 1,2-di-p-tolyldisulfane

Figure S7.GC Spectra of 1,2-bis(3-methoxyphenyl) disulfane

Figure S8. Mass Spectra of 1,2-bis(3-methoxyphenyl) disulfane

Figure S10.Mass Spectra of 2,2'-disulfanediyldianiline

Figure S11.GC Spectra of 1,2-di-tert-pentyldisulfane

Figure S12.Mass Spectra of 1,2-di-tert-pentyldisulfane

Figure S13.GC Spectra of diphenylsulfane

Figure S14. Mass Spectra of diphenylsulfane

Figure S15.GC Spectra of (4-nitrophenyl)(phenyl)sulfane

Figure S16.Mass Spectra of (4-nitrophenyl) (phenyl)sulfane

Figure S17.GC Spectra of phenyl(prop-2-yn-1-yl) sulfane

Figure S18.Mass Spectra of phenyl(prop-2-yn-1-yl) sulfane

Figure S19.GC Spectra of cyclopropyl(phenyl)sulfane

Figure S20.Mass Spectra of cyclopropyl(phenyl)sulfane

Figure S21.GC Spectra of di(furan-2-yl) sulfane

Figure S22.Mass Spectra of di(furan-2-yl) sulfane

References:

1. Ai, Q.; Yuan, Z.; Huang, R.; Yang, C.; Jiang, G.; Xiong, J.; Huang, Z.; Yuan, S., Onepot co-precipitation synthesis of Fe₃O₄ nanoparticles embedded in 3D carbonaceous matrix as anode for lithium ion batteries. *Journal of Materials Science* **2019**,*54* (5), 4212-4224.