Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

[Supporting Information]

Boosting Charge Transport in the BiVO₄ Photoanode Interface modified with an

Aluminum Hydroxide Layer for Solar Water Oxidation

Waka Matsumoto,^a Takashi Fukushima,^a Satoshi Heguri,^b Syuji Fujii,^a

Shinya Higashimoto ^{a*}

^aDepartment of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology,

5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan

^bDepartment of Environmental Engineering, Faculty of Engineering, Osaka Institute of

Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan

To whom correspondence should be addressed.

Dr. Shinya Higashimoto

Tel: +81-6-6954-4283; fax: +81- 6-6957-2135

E-mail: shinya.higashimoto@oit.ac.jp

entries	cocatalyst	Electrolytes / pH	Photocurrent / mA cm ⁻² @1.23 V vs. RHE	references
1	Co ₃ O ₄	0.5 M borate buffer / pH 9.5	2.9	[42]
2	FeOOH	0.5 M phosphate buffer / pH 7	3.6	[25]
3	NiOOH	0.5 M phosphate buffer / pH 7	3.3	[25]
4	FeOOH / NiOOH	0.5 M phosphate buffer / pH 7	3.2	[25]
5	NiOOH / FeOOH	0.5 M phosphate buffer / pH 7	4.2	[25]
6	RuCat. (Ru-based molecular catalyst)	0.1 M phosphate buffer / pH 7.1	1.4	[43]
7	CoPi	0.1 M phosphate buffer / pH 7.1	1.3	[43]
8	CoBi	0.5 M borate buffer / pH 9.3	2.0	[44]
9	Fe-g-C ₃ N ₄ /BiVO ₄	0.2 M phosphate buffer / pH 7	2.2	[45]
10	NiCoO _x /BiVO ₄	0.2 M phosphate buffer / pH 7	4.3	[45]
11	G@LDH@BiVO4	0.1 M phosphate buffer / pH 7	2.1	[46]
12	NiFeO _x	3.5 % NaOH solution	1.3	[47]
13	NiO _x	0.1 M NaOH+H ₂ O ₂ aqueous solution pH 13	1.9	[48]
14	FeO _x	0.1 M NaOH+H ₂ O ₂ aqueous solution pH 13	1.9	[48]
15	CeO _x	0.1 M NaOH+H ₂ O ₂ aqueous solution pH 13	2.2	[48]
16	$\mathrm{Co}_{0.4}\mathrm{Fe}_{0.1}\mathrm{Ce}_{0.5}\mathrm{O}_{\mathrm{x}}$	0.1 M NaOH+H ₂ O ₂ aqueous solution pH 13	2.4	[48]

Table SI 1 Comparisons of cocatalyst on the ${\rm BiVO_4}$ photoelectrodes with photocurrent density.

Scheme SI 1 Photo-graphical procedures for fabrication from BiOI to BiVO₄.

Figure SI 1 Spectral irradiance on the Earth's surface in the standard AM1.5G solar spectrum (black line), and calculated maximum absorption of solar power by BiVO₄ (red line).

Figure SI 2 Cyclic voltammogram on the FTO substrate in the electrolyte solution involving 0.4 M KI and $0.04 \text{ M Bi}(\text{NO}_3)_3$ for the electrodeposition of BiOI.

Figure SI 3 □ XRD patterns of (a) standard powder diffraction pattern of BiOI (JCPDS no. 73-2062), and (b) as-electrodeposited film on FTO.

Figure SI 4 \Box XRD patterns of (a) BiVO₄ and (b) Al-BiVO₄. The Al species on the BiVO₄ was deposited in 0.2 M Al₂(SO₄)₃ for 19h. Al(OH)₃: ICDD 76-1782, BiVO₄: pdf 14-133.

Figure SI 5 SEM image of the BiOI surface.

Figure SI 6 SEM images from (a) side and (b) cross-section of the Al-Mo:BiVO₄.

Figure SI 7 EDX mappings for O, Al, V and Bi elements of Al-Mo:BiVO₄.

Table SI 2 Atomic compositions of BiVO₄, Mo:BiVO₄ and Al-Mo:BiVO₄ determined by EDX (10 kV). The composition of Sn is derived from the FTO substrate.

	V	Bi	0	Mo	Al	Sn
BiVO ₄	1	1.30	2.25	ND	-	0.18
Mo-BiVO ₄	1	1.27	2.25	ND	-	0.22
Al-Mo:BiVO ₄	1	1.26	2.26	ND	0.018	0.19

Table SI 3 Composite ratios of oxygen species on BiVO₄, Mo:BiVO₄ and Al-Mo:BiVO₄ after deconvolution of XPS O1s peaks

photoelectrodes	component	Energy / eV	ratio / %
BiVO ₄	C ₁	529.6	70.3
	C ₂	530.7	29.7
Mo:BiVO ₄	\mathbf{C}_{1}	529.7	71.9
	C ₂	530.7	28.1
Al-Mo:BiVO ₄	C_1	529.7	33.4
	C_2	530.7	14.8
	C ₃	532.0	51.8

Figure SI 8 Mo [I], O [II] XPS spectra with argon etching of the Mo-BiVO₄ photoelectrode surface for (a) 0, (b) 10 and (c) 30s.

Figure SI 9 UV-Vis spectra of BiVO₄, Mo:BiVO₄, Al-BiVO₄, Al-Mo:BiVO₄ photoelectrodes.

Figure SI 10 ABPE on the (a) BiVO₄, (b) Mo:BiVO₄, (c) Al-BiVO₄, (d) Al-Mo:BiVO₄ in 0.5

M borate buffer solution (pH 9.5) under illumination from AM 1.5G solar simulator.

Figure SI 11 I_{ph} -V curves on [I] BiVO₄, [II] Mo:BiVO₄, [III] Al-Mo:BiVO₄ in 0.5 M borate buffer solution (pH 9.5) through back (a) and front (b) irradiation from AM 1.5 solar simulator.

Figure SI 12 Photo-images of 0.1 M Al₂(SO₄)₃ as a function of pH.

Figure SI 13 Effect of pH of $Al_2(SO_4)_3$ solutions for preparation of the Al-Mo:BiVO₄ photoelectrodes on the photocurrent density in 0.5 M borate buffer solutions (pH 9.5) under illumination from AM 1.5G solar simulator. Photoelectrodes were immersed in solutions with different pH for 6 h at 298 K.

Figure SI 14 Effect of deposition time of Al^{3+} ions for preparation of the Al-Mo:BiVO₄ photoelectrode on the photocurrent density in 0.5 M borate buffer solution (pH 7) under illumination from AM 1.5G solar simulator. The photoelectrodes were immersed in solutions (pH 12.7) in 0.1 M Al₂(SO₄)₃ aq. at 298 K.

Figure SI 15 Change of photo-charging potentials [I] and schematics of open circuit voltages [II] on (a) BiVO₄, (b) Mo:BiVO₄, (c) Al-BiVO₄, (d) Al-Mo:BiVO₄ in 0.5 M borate buffer solution (pH 9.5) under illumination from AM 1.5G solar simulator.

Figure SI 16 I_{ph} -V curves on [I] BiVO₄, [II] Mo:BiVO₄, [III] Al-Mo:BiVO₄ in 0.5 M borate buffer solution (pH 9.5) in the absence (a) and presence (b) of 0.2 M Na₂SO₃ under illumination from AM 1.5G solar simulator.

Figure SI 17 Stability of photocurrent density on (a) $BiVO_4$, (b) Mo: $BiVO_4$, and (c) Al-Mo: $BiVO_4$ at +0.8 V vs. RHE in 0.5 M borate buffer solution (pH 9.5) under photo-irradiation from AM 1.5 solar simulator.

Figure SI 18 Changes in various XPS spectra of [I] Bi, [II] V, [III] O, [IV] Mo, [V] Al on the Al-Mo:BiVO₄ photoelectrode before (a) and after (b) photo-irradiation. Photoelectrode was biased at +0.8 V vs. RHE in 0.5 M borate buffer solution (pH 9.5) under photo-irradiation from AM 1.5 solar simulator for 1h.

(a)		(b)		
Number of measurements	contact angle / degree	Number of measurements	contact angle / degree	
1	149.7	1	119.7	
2	138.3	2	124.2	
3	142.4	3	121.1	
Avg.	143.5	Avg.	121.7	

Figure SI 19 Photographs of photoelectrode: (a) BiVO₄, (b) Al-BiVO₄ contacted with water droplets.