Supplementary Information

Equivalent circuit models for predicting electrical and gas output characteristics of CO₂ electrolysis cells

Yuki Kudo*, Akihiko Ono, Satoshi Mikoshiba and Ryota Kitagawa

Corporate Research & Development Center, Toshiba Corporation, Kawasaki, Kanagawa 212-8582, Japan

E-mail: yuki.kudo@toshiba.co.jp

Cell configuration

The cathode was prepared by spray coating Au/C catalyst powder onto carbon paper with a microporous layer (Avcarb, MB-30) ^[1]. Titanium non-woven fabric coated with an Ir-based catalyst (Becart) was used for the anode. The area of these electrodes was 16 cm² (cut to 4×4 cm). Here, electrode area, thickness, and CO₂ flow rate are discussed in detail as these are important parameters affecting cell performance. Increasing the electrode area and thickness has both positive and negative effects on cell performance, as described below. Due to the potential gradient between the anode and the cathode in the CO₂ reduction reaction, K⁺ and solvating water (i.e., the electrolyte from the anode) can move to the cathode and reach the cathode flow channel. If the electrolyte is retained in the cathode flow channel, then flooding of the catalytic layer will likely occur, which may accelerate the hydrogen production reaction in the side reaction. This would reduce cell performance. For a given gas flow rate (for the same groove depth of the cathode flow channel). The higher gas speed is advantageous for rapidly discharging the electrolyte reaching the channels, and the cell performance should improve as the electrode area is increased.

On the other hand, a large electrode area tends to cause in-plane non-uniformity in the clamping pressure of the components, which may result in a non-uniform current distribution and increase the cell voltage. A large power source and evaluation equipment are also required. We chose a mediumsized electrode area of 16 cm² (= 4 × 4 cm) to allow for good cell performance and evaluation on a laboratory scale. A thicker electrode (i.e., a thicker gas diffusion layer [GDL]) would be advantageous for in-plane gas diffusion but disadvantageous for electrolyte evacuation in the thickness direction. Commercially available GDLs are around 200 to 400 μ m thick, and we selected a GDL with a thickness of approximately 200 μ m in the hope that it would favor electrolyte discharge. In this study, the gas flow rate was varied among four points for modeling purposes, as described below, but a higher CO₂ gas flow rate is advantageous for cell performance.

A commercially available anion exchange membrane (AEM; Versogen, PiperION HCO₃⁻ reinforced) separated the cathode and anode. The AEM was ion-exchanged twice with 500 mM KOH for 1 h. After washing the AEM with pure water, the membrane electrode assembly (cathode/membrane/anode) was stacked and clamped with flow channel plates (titanium), current collecting plates (SUS-coated gold), insulating plates (PTFE), cooling/heating plates (copper or aluminum), and clamping plates (SUS) as shown in Fig. 3. A gasket (PTFE), omitted from the figure, was placed around the electrode. Potential measurement is performed using a reference electrode in contact with the membrane. We measured the potential by touching a platinum foil (100 µm thick) as a Pt pseudo-reference electrode to the AEM on the cathode side, as shown in Fig. 3. Pt was used because it is chemically stable.

CO₂ electrolysis experiments

 CO_2 (99.99 %) was supplied to the cathode channel using four different flow rate conditions, i.e., 40, 80, 120, 160 sccm (2.5, 5, 7.5, 10 sccm cm⁻² per electrode area). The CO₂ was humidified with a bubbler to suppress salt precipitation in the cathode. The gas and electrolyte piping on the input side was heated to 50°C by a heater, which is not shown in Fig. 3. The gases output from the cathode and anode channels were diluted with Ar, and the flow rate was measured using a volumetric flow meter. Since the mixed gas is output from the cell, it is essential to measure the flow rate using a volumetric flow meter rather than a mass flow meter. The gas concentration output from the cell was analyzed using gas chromatography. The cell temperature was controlled by cooling or heating the cooling/heating plate, and the cell temperature was set to one condition of 50 °C. The anode flow channel was fed with 0.1 M KHCO₃ (99% Kanto Chemical) at a flow rate of 10 mL min⁻¹. A low anode electrolyte flow rate may lead to insufficient water supply to the anode catalyst due to the retention of generated O₂ bubbles, resulting in poor cell performance. The anode electrolyte flow rate was set to a value that did not affect cell performance.

A potentiostat (Bio-Logic Science Instruments, VMP-300 with 10A booster board) or DC power supply (KIKUSUI, PWR401L) was used to flow the current between the cathode and anode. The current-voltage characteristics were evaluated using the following measurement protocol.

- (1) A constant current of 200 mA cm⁻² is applied for 1 h as aging.
- (2) The resistance is measured using the current interrupt method (from 200 mA cm⁻² to 0 mA cm⁻²). In our equivalent circuit model, the series resistance was approximated as a constant value, and the series resistance of the cathode $R_{s,cathode}$ (resistance between the cathode and the Pt) and the series resistance of the anode + the membrane resistance of the AEM $R_{s,anode} + R_{s,membrane}$ (resistance between the anode and the Pt) were applied as representative values.
- (3) A staircase current (Table S1) is applied to measure the total current density dependence J_{total} of the cell voltage V_{cell} , the cathode potential V_c , the anode potential V_a , and the output gas concentration. Note that V_a includes the IR drop of the AEM. The duration of each step was 10 min. The range of J_{total} was varied with the CO₂ flow rate because CO₂ is consumed at low current density when the CO₂ flow rate is low (Table S2). Since CO concentrations were below the detection limit at 0.5 to 5 mA cm⁻², data above 10 mA cm⁻² were used to calculate

the Tafel parameters.

Step	J _{total} (mA cm ⁻²)	Step	J _{total} (mA cm ⁻²)
1	0.5	13	250
2	1	14	300
3	2	15	350
4	5	16	400
5	10	17	450
6	20	18	500
7	40	19	550
8	60	20	600
9	80	21	650
10	100	22	700
11	150	23	750
12	200	24	800

Table S1 Staircase current (10 min per step)

Table S2 Range of the current density at each CO2 flow rate

CO ₂ flow rate (sccm cm ⁻²)	Current density (mA cm ⁻²)
2.5	0.5-400
5	0.5-600
7.5	0.5 - 700
10	0.5-800

The IR drop was removed, and the cathode and anode potentials for the reference hydrogen electrode (RHE), V_c (vs. RHE) and V_a (vs. RHE), were estimated using Eq. (S1).

$$V_{c \ or \ a}(vs. \text{RHE}) = V_{c \ or \ a}(vs. \text{Pt}) + V_{0,Pt} + \frac{RT}{F}ln(10)\text{pH}$$
 (S1)

Here, $V_{0, Pt}$ is the potential versus the standard hydrogen electrode (SHE) of Pt pseudo-reference electrode, *R* is the gas constant, *T* is the temperature, and the subscripts c and a indicate the cathode and anode. Since the liquid permeated AEM, pH was assumed to be 7.8, equivalent to the electrolyte. The cell shown in Fig. S1 was used to compare the potential of the Pt pseudo-reference electrode and Ag/AgCl reference electrode (saturated KCl) by bringing two of them into contact with the AEM on the cathode side to investigate the electrode potential of the Pt pseudo-reference electrode. The average potential difference between the Pt pseudo-reference electrode and Ag/AgCl reference electrode in the low-current region used to estimate Tafel parameters in Fig. 5 had a small value of -7 mV. Therefore,

Fig. S1 Schematic drawing of CO₂ EC incorporating the Pt pseudo-reference electrode and the Ag/AgCl reference electrode (saturated KCl). (a) Cell configuration. (b) Location of the Pt pseudo-reference electrode and the Ag/AgCl reference electrode viewed from the back side of the cathode. The Pt pseudo-reference electrode was in contact with AEM. KCl salt bridges were placed between the Ag/AgCl reference electrode and AEM.

J _{total} (mA cm ⁻²)	Cathode potential (V vs. Pt)	Cathode potential (V vs. Ag/AgCl)	Difference (V)	
10.0	-1.046	-1.041	-0.005	
20.0	-1.094	-1.088	-0.006	
30.0	-1.127	-1.117	-0.010	
40.0	-1.150	-1.141	-0.009	

Table S3 Cathode potential

the potential of the Pt pseudo-reference electrode was estimated to be 167 mV versus SHE using the potential 174 mV versus SHE of the Ag/AgCl reference electrode. In the CO₂ flow rate dependence experiment, only Pt pseudo-reference electrode was used to measure the potential.

The overvoltages η_{CO} , η_{H_2} , and η_{O_2} of the CO evolution reaction, hydrogen evolution reaction, and O₂ evolution reaction were calculated from the standard electrode potential U, RHE reference cathode potential V_c , and anode potential V_a using the following equations.

$$\eta_{CO} = U_{CO} - V_c(vs. \text{ RHE}) \tag{S2}$$

$$\eta_{H_2} = U_{H_2} - V_c(vs. \text{RHE}) \tag{S3}$$

$$\eta_{O_2} = V_a(vs. \text{RHE}) - U_{O_2} \tag{S4}$$

The flow rate of each output gas ($M_{g,cathode or anode,out}$), the partial current density (J_g), and the Faradaic efficiency (FE_g) were calculated using the following equations.

$$M_{g,cathode or anode,out} = C_{g,cathode or anode} \frac{F_r}{V_{ntp}}$$
(S5)

$$J_g = M_{g,cathode,out} n_g F \tag{S6}$$

$$FE_g = \frac{J_g}{J_{total}} \tag{S7}$$

$$FE_{total} = FE_{CO} + FE_{H2} \tag{S8}$$

Here, *C* is the concentration, F_r is the volumetric flow rate, V_{npt} is the volume of ideal gas at NPT, the subscript *g* is the gas species (CO, H₂, O₂ in Eq. (S5); CO and H₂ in Eqs. (S6) and (S7)), *n* is the number of reaction electrons, and F is Faraday constant.

Effect of CO₂ flow rate for CO₂ EC performance

Figure S2 shows FE_{CO} , FE_{H_2} , and FE_{total} versus J_{total} for various CO₂ flow rates. When the CO₂ flow rate is low, FE_{CO} decreases, and FE_{H_2} increases because CO₂ is fully consumed at low current density. Conversely, when the CO₂ flow rate increases, the high FE_{CO} (> 90 %) region extends to the high current density side.

Fig. S2 FECO, FEH2, and FEtotal versus Jtotal for various CO2 flow rates

Figure S3 shows J_{CO} versus J_{total} . When the CO₂ flow rate is low, J_{CO} is limited to a low current density. We define limited J_{CO} at each CO₂ flow rate as $J_{CO, L}$, as shown in Fig. 4.

Fig. S3 J_{CO} versus J_{total} for various CO₂ flow rates.

Next, to verify the experimental results, we estimated the sum of CO_2 flow rate output from the cathode and anode with the CO_2 consumption flow rate for the CO_2 reduction reaction.

$$F_{r,CO_2,output and consumption} = (M_{CO_2,cathode,out} + M_{CO_2,cathode,consumption})V_{ntp}$$
(S9)

As shown in Fig. S4, for a wide range of current densities, the sum of the CO_2 output from the cathode and anode with the CO_2 consumption flow rates was close to the input CO_2 , with a small difference of less than 5%.

Fig. S4 Sum of CO2 output from the cathode and anode flow rates with CO2 consumption versus J_{total}.

Simulation of faradaic efficiency and cell voltage of CO₂ EC

Figure S5 compares simulated and measured data for faradaic efficiency and cell voltage for the CO_2 flow rates of 2.5, 7.5, and 10 sccm cm⁻² using the parameters determined at the CO_2 flow rate of 5

sccm cm⁻². The simulation reproduces the experimental behavior well, which means that our equivalent circuit model can be used to predict the output characteristics of the CO_2 EC.

Fig. S5 Faradaic efficiency and cell voltage versus total current density (*J_{total}*) for four CO₂ input flow conditions. (a),
(b) CO₂ input: 2.5 sccm cm⁻². (c), (d) CO₂ input: 7.5 sccm cm⁻². (e), (f) CO₂ input: 10 sccm cm⁻².

Mass balance of C_xH_yO_z evolution reaction

In the main text, we discussed mass balance when the CO is generated from CO_2 . Here, we further generalize and supplement the case where $C_xH_yO_z$ is produced from CO_2 .

The reaction equation for the evolution of CxHyOz by CO2 reduction reaction is expressed as follows.

$$xCO_2 + aH_2O + n_{C_xH_yO_z}e^- \rightarrow C_xH_yO_z + n_{C_xH_yO_z}OH^-$$
 (S10)

$$a = 2x + y - z \tag{S11}$$

$$n_{C_x H_y O_z} = 4x + y - 2z \tag{S12}$$

The $C_xH_yO_z$ output from the cathode is expressed using the partial current density used for the $C_xH_yO_z$ evolution reaction ($C_xH_yO_z$ ER),

$$M_{C_xH_yO_z,cathode,out} = \frac{J_{C_xH_yO_z}}{n_{C_xH_yO_z}F}$$
(S13)

where *M* is the molar flow rate mol s⁻¹ cm⁻², *J* is the current density A cm⁻², n is the number of reactive electrons, and *F* is Faraday's constant C mol⁻¹. In an anion-transfer type cell, some of the CO₂ input to the cathode becomes CO_3^{2-} or HCO_3^{-} , which moves to the anode by drift or diffusion and is converted again to CO₂. Therefore, the unreacted CO₂ output from the cathode is the CO₂ input to the cathode minus the CO₂ used for C_xH_yO_z ER and the CO₂ output from the anode, which can be expressed as follows.

 $M_{CO_2,cathode,out} = M_{CO_2,cathode,in} - xM_{C_xH_yO_z,cathode,out} - M_{CO_2,anode,out}$ (S14) The CO₂ used for C_xH_yO_z ER can be expressed in terms of C_xH_yO_z flow rate using the molar ratio x between the CO₂ and C_xH_yO_z, as shown in Eq. (S10).

Since the charges of CO_3^{2-} and HCO_3^{-} are differ by a factor of two, as shown in Eqs. (5) and (6), the CO_2 (per reaction electron number) output from the anode depends on the ion species. This paper proposes a model that accounts for CO_3^{2-} and HCO_3^{-} migration by expressing the fraction of CO_3^{2-} that moves from the cathode to the anode as *G* (fraction of $HCO_3^{-} = 1 - G$). Using G, the CO_2 output from the anode can be expressed as follows.

$$M_{CO_2,anode,out} = \frac{J_{C_x H_y O_z}}{2F} (2 - G)$$
(S15)

If the CO_2 output from the cathode is zero, the CO_2 flow rate used to generate $C_xH_yO_z$ and the CO_2 flow rate output from the anode can be expressed as follows.

$$\frac{M_{CO_2 \ to \ C_xH_yO_z, cathode, out}}{M_{CO_2, cathode, in}} = \frac{x \left[\frac{n_{C_xH_yO_z}}{2}(1+G) + x\right]}{\left(x + \frac{n_{C_xH_yO_z}}{2}\right)\left(x + n_{C_xH_yO_z}\right)}$$
(S16)

$$\frac{M_{CO_2,anode,out}}{M_{CO_2,cathode,in}} = \frac{\frac{n}{2} \left[x(2-G) + n_{C_x H_y O_z} \right]}{\left(x + \frac{n_{C_x H_y O_z}}{2} \right) \left(x + n_{C_x H_y O_z} \right)}$$
(S17)

The results of the calculations according to Eqs. (S16) and (S17) for various $C_xH_yO_z$ evolution reactions are shown in Table S4.

Table S4 Ratio of the CO_2 flow rate used for $C_xH_yO_z$ evolution and the CO_2 flow rate output from the anode (when CO_2 output from the cathode is zero)

							$G = 1 (CO_3^{2-} transport)$		G = 0 (HCO₃ ⁻ transport)	
C _x H _y O _z		x	у	Z	а	n	$\frac{M_{CO_2 \ to \ C_XH_yO_2, cathode, out}}{M_{CO_2, cathode, in}}$	M _{CO2} ,anode,out M _{CO2} ,cathode,in	$\frac{M_{CO_2 \ to \ C_XH_yO_Z, cathode, out}}{M_{CO_2, cathode, in}}$	M _{CO2} ,anode,out M _{CO2} ,cathode,in
Carbon monoxide	CO	1	0	1	1	2	0.500	0.500	0.333	0.667
Formic acid	HCOOH	1	2	2	2	2	0.500	0.500	0.333	0.667
Methanol	CH₃OH	1	4	1	5	6	0.250	0.750	0.143	0.857
Methane	CH4	1	4	0	6	8	0.200	0.800	0.111	0.889
Ethylene	C_2H_4	2	4	0	8	12	0.250	0.750	0.143	0.857
Ethanol	C₂H₅OH	2	6	1	9	12	0.250	0.750	0.143	0.857
Ethane	C ₂ H ₆	2	6	0	10	14	0.222	0.778	0.125	0.875
Propanol	C₃H7OH	3	8	1	13	18	0.250	0.750	0.143	0.857
Ethylene glycol	$C_2H_6O_2$	2	6	2	8	10	0.286	0.714	0.167	0.833

$C_x H_y O_z$ limiting current density ($J_{CxHyO_z, L}$)

The maximum amount of CO₂ available for $C_xH_yO_z$ ER is the amount of CO₂ input from the cathode minus the amount of CO₂ transferred to the anode. In other words, $J_{CxHyOz, L}$ is limited by the maximum amount of CO₂ available for $C_xH_yO_z$ ER. The relationship between $J_{CxHyOz, L}$, and the CO₂ flow rate input to the cathode can be expressed as follows.

$$J_{C_{x}H_{y}O_{z},L} = \frac{x \left[\frac{n_{C_{x}H_{y}O_{z}}}{2}(1+G) + x\right]}{\left(x + \frac{n_{C_{x}H_{y}O_{z}}}{2}\right)\left(x + n_{C_{x}H_{y}O_{z}}\right)} n_{C_{x}H_{y}O_{z}}FM_{CO_{2},cathode,in}$$
(S18)

Using this mass balance and the limiting current density equations of the $C_xH_yO_z$ ER, our equivalent circuit model can be applied to CO_2 ECs that produce various gases and liquids from CO_2 .

Reference

[1] Kofuji, Y. et al. "Efficient Electrochemical Conversion of CO₂ to CO Using a Cathode with PorousCatalyst Layer under Mild pH Conditions" *Chem. Lett.*, 2021, **50**, 482-484