Supplementary information

Facile fabrication of novel efficient NiCo2O4@NiAl-LDH/NF and high electrochemical

performance Fe₂O₃@rGO electrodes for hybrid supercapacitor

Xiaoxuan Liu^{a,c,#}, Wenwen Tan^{a,#}, Zao Jiang^b, Yu Hao^c, Yong Wang^a, Jingyi Ye^a, Qi Feng^{a,*}, Longjun Xu

^a, Chenglun Liu ^{a,d, *}

^a State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing,

400044, PR China

^b School of Emergency Management, Xihua University, Chengdu, 610101, PR China

^c Science and Technology Department, Chongqing Vocational Institute of Engineering, Chongqing 402260, PR China

^d College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China

[#] Xiaoxuan Liu and Wenwen Tan contribute equally to the paper

*. Corresponding Author

Tel: +86 18223208007. E-mail: qifeng868@cqu.edu.cn

Tel: +86 13883702103. E-mail: xlclj@cqu.edu.cn

To optimize the reaction conditions, were changed, and a series of Fe_2O_3 @rGO composite materials were prepared for the different hydrothermal reaction temperatures. The electrochemical properties of the electrode materials were investigated in a three-electrode system. Fig. S1 (a) shows the CV curve of Fe₂O₃@rGO prepared at different hydrothermal temperatures at a sweeping speed of 10 mV s⁻¹. It can be observed that the area enclosed by the closed CV curve is 180 °C > 200 °C > 220 °C > 160 °C, indicating that 180 °C is the best reaction temperature, which is consistent with the GCD curve corresponding to Fig. S1(b).

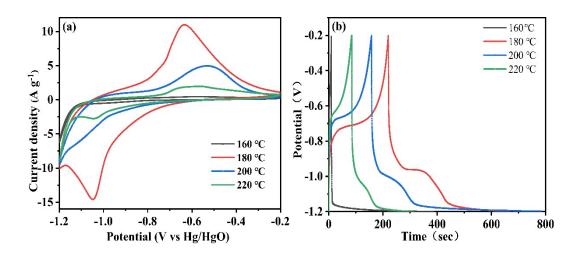


Fig. S1 (a) CV curves of Fe_2O_3 @rGO prepared at different hydrothermal temperatures at 10 mV s⁻¹ sweep speed; (b) GCD curves of Fe_2O_3 @rGO prepared at different hydrothermal temperatures under 2 A g⁻¹ current density.