The application of the hierarchical approach for the construction of

foldameric peptide self-assembled nanostructures

Monika Szefczyk, Natalia Szulc, Marlena Gąsior-Głogowska, Dominika Bystranowska, Andrzej Żak, Andrzej Sikora, Oliwia Polańska, Andrzej Ożyhar, Łukasz Berlicki

Content	Page Number
Table S1 Peptides analytical data.	S2
Fig. S2 Mass spectra.	S 3
Fig. S3 Analytical HPLC chromatograms.	S 7
Eqn. S4. Mean residue ellipticity calculation.	S 11
Eqn. S5. The thermal denaturation experiment data fitting.	S 12
Fig. S6 Sedimentation coefficient distributions c(s) obtained for different concentrations.	S 13
Fig. S7 Raw ATR-FTIR spectra on the day of dissolving.	S 14
Fig. S8 Raw ATR-FTIR spectra after 30 days of incubation at 37 ${ }^{\circ} \mathrm{C}$.	S 15
Fig. S9 Normalized ATR-FTIR spectra of air-dried films registered on the day of dissolving.	S 16
Fig. S10 Normalized ATR-FTIR spectra of air-dried films registered after 30 days of incubation at 37 ${ }^{\circ} \mathrm{C}$.	S 17
Fig. S11 Raw FT-Raman spectra.	S 19
Fig. S12 Normalized FT-Raman spectra.	S 20
Fig. S13 The comparison of the normalized ATR-FTIR spectra after dissolving and after 30 days of incubation.	S 21
Fig. S14 Frequency distributions of the peptides height observed by AFM.	S 22
Fig. S15 Electron micrographs with size measurements after 30 days of incubation at 37 ${ }^{\circ} \mathrm{C}$.	S 23
Fig. S16 The studied peptides stained with Congo red and examined under crossed polarized light.	S 24
Fig. S17 Results of ThT fluorescence kinetic assay.	S 26
Table S18 The mean values of relative fluorescence in the time range of 5 to 12.	S 26

Table S1 Peptides analytical data.

Name	Formula	Calculated M/z	Experimental M/z	Analytical HPLC $\mathbf{t}_{\mathbf{r}}$ [min]
$\mathbf{1}$	$\mathrm{C}_{130} \mathrm{H}_{203} \mathrm{~N}_{33} \mathrm{O}_{37}$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1410.7693$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 940.8431$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1410.7601$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 940.8427$	16.467
$\mathbf{1} \mathbf{b}$	$\mathrm{C}_{139} \mathrm{H}_{215} \mathrm{~N}_{33} \mathrm{O}_{37}$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1470.8071$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 980.8740$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1470.8396$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 980.8728$	16.733
$\mathbf{1} \mathbf{c}$	$\mathrm{C}_{139} \mathrm{H}_{215} \mathrm{~N}_{33} \mathrm{O}_{37}$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1470.8071$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 980.8740$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1470.7970$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 980.8748$	17.933
$\mathbf{1} \mathbf{1} \mathbf{f}$	$\mathrm{C}_{135} \mathrm{H}_{209} \mathrm{~N}_{31} \mathrm{O}_{35}$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1413.7856$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 942.8597$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1413.7716$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 942.8586$	17.900
$\mathbf{2}$	$\mathrm{C}_{11} \mathrm{H}_{198} \mathrm{~N}_{32} \mathrm{O}_{34}$	$[(\mathrm{M}+3 \mathrm{H}) / 3] 874.5004$ $[(\mathrm{M}+4 \mathrm{H}) / 4] 656.3780$	$[(\mathrm{M}+3 \mathrm{H}) / 3] 874.4998$ $[(\mathrm{M}+4 \mathrm{H}) / 4] 656.3998$	17.473
$\mathbf{2 _ b}$	$\mathrm{C}_{128} \mathrm{H}_{210} \mathrm{~N}_{32} \mathrm{O}_{34}$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1371.2937$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 914.5317$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1371.2964$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 914.5308$	17.053
$\mathbf{2} \mathbf{c}$	$\mathrm{C}_{128} \mathrm{H}_{210} \mathrm{~N}_{32} \mathrm{O}_{34}$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1371.2937$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 914.5317$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1371.2887$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 914.5313$	17.173
$\mathbf{2} \mathbf{f}$	$\mathrm{C}_{124} \mathrm{H}_{204} \mathrm{~N}_{30} \mathrm{O}_{32}$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1314.2722$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 876.5174$	$[(\mathrm{M}+2 \mathrm{H}) / 2] 1314.2855$ $[(\mathrm{M}+3 \mathrm{H}) / 3] 876.5172$	17.440

Fig. S2 Mass spectra of the studied peptides.

Fig. S3 Analytical HPLC chromatograms of the studied peptides.

Mean residue ellipticity was calculated using the equation (S4):

$$
\begin{equation*}
\theta=\frac{M \theta_{M R E}}{10 c l n} \tag{S4}
\end{equation*}
$$

$\theta=$ mean residue ellipticity
$\theta_{\text {MRE }}=$ ellipticity
$\mathrm{c}=$ concentration
$1=$ path length
$\mathrm{n}=$ number of residues
$[\theta]=\left[\operatorname{deg} \times \mathrm{cm}^{2} \times \mathrm{dmol}^{-1}\right]$

Eqn. S4. Mean residue ellipticity calculation.

For each thermal denaturation experiment, the data were fit to a two-state folding model adapted and described by Kreitler et al. [I] using OriginPro 9.0.We used equation (S7):

$$
\begin{equation*}
\theta=\frac{1}{1+e \frac{-\Delta H\left(1-\frac{T}{T_{m}}\right)}{R T}}\left(b_{f}-b_{u}-m_{u} T+m_{f} T\right)+b_{u}+m_{u} T \tag{S7}
\end{equation*}
$$

where:
$\theta=$ measured ellipticity
$b_{f}=y$-intercept of folded baseline
$b_{u}=y$-intercept of unfolded baseline
$m_{f}=$ slope of folded baseline
$m_{u}=$ slope of unfolded baseline
$\mathrm{T}=$ temperature
$\mathrm{T}_{\mathrm{m}}=$ melting temperature
$\Delta \mathrm{H}=$ enthalpy of folding
$\mathrm{R}=$ ideal gas constant

Eqn. S5. The thermal denaturation experiment data fitting.
[I] D. F. Kreitler, et al. Effects of Single α-to- β Residue Replacements on Structure and Stability in a Small Protein: Insights from Quasiracemic Crystallization. J. Am. Chem. Soc. 2016, 138, 6498-6505.

Fig. S6 Sedimentation coefficient distributions c(s) obtained for different concentrations of the studied peptides resuspended in water. Centrifugation was performed at 50000 rpm and $20^{\circ} \mathrm{C}$.

Fig. S7 Raw ATR-FTIR spectra of the studied peptides in the range of 3600-800 cm^{-1} on the day of dissolving. $\mathrm{C}_{\mathrm{pep}}=320 \mu \mathrm{M}$.
(

Fig. S8 Raw ATR-FTIR spectra of the studied peptides in the range of $3600-800 \mathrm{~cm}^{-1}$ after 30 days of incubation at $37^{\circ} \mathrm{C} . \mathrm{C}_{\text {pep }}=320 \mu \mathrm{M}$.

Fig. S9 Normalized ATR-FTIR spectra of air-dried films of studied peptides registered on the day of dissolving, with sub-bands obtained from the curve fitting procedure in the amide bands region (1775$1475 \mathrm{~cm}^{-1}$). $\mathrm{C}_{\text {pep }}=320 \mu \mathrm{M}$.

Fig. S10 Normalized ATR-FTIR spectra of air-dried films of studied peptides registered after 30 days of incubation at $37^{\circ} \mathrm{C}$, with sub-bands obtained from the curve fitting procedure in the amide bands region (1775-1475 cm^{-1}). $\mathrm{C}_{\mathrm{pep}}=320 \mu \mathrm{M}$.

Fig. S11 Raw FT-Raman spectra of the studied peptides in the range of $3600-400 \mathrm{~cm}^{-1} . \mathrm{C}_{\text {pep }}=320 \mu \mathrm{M}$.

Fig. S12 Normalized FT-Raman spectra of the studied peptides smoothed with SG 35 (see Methods), in the wavenumber range of $1375-1175 \mathrm{~cm}^{-1}$ (Amide III). $\mathrm{C}_{\text {рер }}=320 \mu \mathrm{M}$.

Fig. S13 The comparison of the normalized ATR-FTIR spectra after dissolving and after 30 days of incubation. $\mathrm{C}_{\mathrm{pep}}=320 \mu \mathrm{M}$.

Fig. S14 Frequency distributions of the peptides height observed by AFM.

Fig. S15 Electron micrographs with size measurements (in nm) of the obtained nanostructures after 30 days of incubation at $37{ }^{\circ} \mathrm{C}$ (magnification of 20000). The yellow marks correspond to the length dimension, whereas the green dots indicate specific points for measuring the diameter. $\mathrm{C}_{\text {pep. }}=160 \mu \mathrm{M}$.

Fig. S16 The studied peptides stained with Congo red and examined under crossed polarized light (see right column). The original magnification $\times 200$.

Fig. S17 Results of ThT fluorescence kinetic assay registered for the studied peptides.

Table S18 The mean values of relative fluorescence in the time range of 5 to 12 hours calculated for the studied peptides.

Sample	Relative fluorescence \pm standard deviation [-]
$\mathbf{1}$	29018.83 ± 17342.14
$\mathbf{1 _ b}$	149775.52 ± 62436.88
$\mathbf{1 _ c}$	203530.07 ± 62893.68
$\mathbf{1 _ f}$	208124.59 ± 51289.37
$\mathbf{2}$	16068.33 ± 1606.03
2_b	16152.38 ± 4755.09
2_c	243411.35 ± 66.13
2_f	

