Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2023

Supporting Information

The application of the hierarchical approach for the construction of

foldameric peptide self-assembled nanostructures

Monika Szefczyk, Natalia Szulc, Marlena Gąsior-Głogowska, Dominika Bystranowska, Andrzej Żak,

Andrzej Sikora, Oliwia Polańska, Andrzej Ożyhar, Łukasz Berlicki

Content	Page Number
Table S1 Peptides analytical data.	S2
Fig. S2 Mass spectra.	S3
Fig. S3 Analytical HPLC chromatograms.	S7
Eqn. S4. Mean residue ellipticity calculation.	S11
Eqn. S5. The thermal denaturation experiment data fitting.	S12
Fig. S6 Sedimentation coefficient distributions $c(s)$ obtained for different concentrations.	S13
Fig. S7 Raw ATR-FTIR spectra on the day of dissolving.	S14
Fig. S8 Raw ATR-FTIR spectra after 30 days of incubation at 37 °C.	S15
Fig. S9 Normalized ATR-FTIR spectra of air-dried films registered on the day of dissolving.	S16
Fig. S10 Normalized ATR-FTIR spectra of air-dried films registered after 30 days of incubation at 37 °C.	S17
Fig. S11 Raw FT-Raman spectra.	S19
Fig. S12 Normalized FT-Raman spectra.	S20
Fig. S13 The comparison of the normalized ATR-FTIR spectra after dissolving and after 30 days of incubation.	S21
Fig. S14 Frequency distributions of the peptides height observed by AFM.	S22
Fig. S15 Electron micrographs with size measurements after 30 days of incubation at 37 °C.	S23
Fig. S16 The studied peptides stained with Congo red and examined under crossed polarized light.	S24
Fig. S17 Results of ThT fluorescence kinetic assay.	S26
Table S18 The mean values of relative fluorescence in the time range of 5 to 12.	S26

 Table S1 Peptides analytical data.

Name	Formula	Calculated M/z	Experimental M/z	Analytical HPLC t _r [min]
1	$C_{130}H_{203}N_{33}O_{37}$	[(M+2H)/2] 1410.7693	[(M+2H)/2] 1410.7601	16.467
		[(M+3H)/3] 940.8431	[(M+3H)/3] 940.8427	
1 h	CHNO	[(M+2H)/2] 1470.8071	[(M+2H)/2] 1470.8396	16 722
1_U	$C_{139} I_{215} I_{33} C_{37}$	[(M+3H)/3] 980.8740	[(M+3H)/3] 980.8728	10.755
1_c	1_c C ₁₃₉ H ₂₁₅ N ₃₃ O ₃₇	[(M+2H)/2] 1470.8071	[(M+2H)/2] 1470.7970	17.022
		[(M+3H)/3] 980.8740	[(M+3H)/3] 980.8748	17.955
1_f	C ₁₃₅ H ₂₀₉ N ₃₁ O ₃₅	[(M+2H)/2] 1413.7856	[(M+2H)/2] 1413.7716	17.000
		[(M+3H)/3] 942.8597	[(M+3H)/3] 942.8586	17.900
2	C ₁₁₉ H ₁₉₈ N ₃₂ O ₃₄	[(M+3H)/3] 874.5004	[(M+3H)/3] 874.4998	17 472
		[(M+4H)/4] 656.3780	[(M+4H)/4] 656.3998	17.475
2_b C ₁₂₈	C II N O	[(M+2H)/2]1371.2937	[(M+2H)/2]1371.2964	17.052
	$C_{128}\Pi_{210}\Pi_{32}O_{34}$	[(M+3H)/3] 914.5317	[(M+3H)/3] 914.5308	17.053
2_c	C ₁₂₈ H ₂₁₀ N ₃₂ O ₃₄	[(M+2H)/2]1371.2937	[(M+2H)/2]1371.2887	17 172
		[(M+3H)/3] 914.5317	[(M+3H)/3] 914.5313	1/.1/3
2_f	C ₁₂₄ H ₂₀₄ N ₃₀ O ₃₂	[(M+2H)/2]1314.2722	[(M+2H)/2]1314.2855	17 440
		[(M+3H)/3] 876.5174	[(M+3H)/3] 876.5172	17.440

S5

Fig. S2 Mass spectra of the studied peptides.

Fig. S3 Analytical HPLC chromatograms of the studied peptides.

Mean residue ellipticity was calculated using the equation (S4):

$$\theta = \frac{M\theta_{MRE}}{10cln}$$
 (S4)

 θ = mean residue ellipticity

 $\theta_{MRE} = ellipticity$

c = concentration

l = path length

n = number of residues

 $[\theta] = [\text{deg} \times \text{cm}^2 \times \text{dmol}^{-1}]$

Eqn. S4. Mean residue ellipticity calculation.

For each thermal denaturation experiment, the data were fit to a two-state folding model adapted and described by Kreitler *et al.* [I] using OriginPro 9.0.We used equation (S7):

$$\theta = \frac{1}{\frac{-\Delta H(1 - \frac{T}{T_m})}{1 + e \frac{RT}{RT}}} (b_f - b_u - m_u T + m_f T) + b_u + m_u T$$
(S7)

where:

 θ = measured ellipticity

 $b_f = y$ -intercept of folded baseline

b_u = y-intercept of unfolded baseline

 $m_f =$ slope of folded baseline

 $m_u =$ slope of unfolded baseline

T = temperature

T_m= melting temperature

 ΔH = enthalpy of folding

R = ideal gas constant

Eqn. S5. The thermal denaturation experiment data fitting.

[I] D. F. Kreitler, *et al.* Effects of Single α -to- β Residue Replacements on Structure and Stability in a Small Protein: Insights from Quasiracemic Crystallization. *J. Am. Chem. Soc.* **2016**, *138*, 6498–6505.

Fig. S6 Sedimentation coefficient distributions c(s) obtained for different concentrations of the studied peptides resuspended in water. Centrifugation was performed at 50 000 rpm and 20 °C.

Fig. S7 Raw ATR-FTIR spectra of the studied peptides in the range of 3600-800 cm⁻¹ on the day of dissolving. $C_{pep} = 320 \ \mu M$.

Fig. S8 Raw ATR-FTIR spectra of the studied peptides in the range of 3600-800 cm⁻¹ after 30 days of incubation at 37 °C. $C_{pep} = 320 \ \mu M$.

Fig. S9 Normalized ATR-FTIR spectra of air-dried films of studied peptides registered on the day of dissolving, with sub-bands obtained from the curve fitting procedure in the amide bands region (1775-1475 cm⁻¹). $C_{pep} = 320 \ \mu M$.

Fig. S10 Normalized ATR-FTIR spectra of air-dried films of studied peptides registered after 30 days of incubation at 37 °C, with sub-bands obtained from the curve fitting procedure in the amide bands region (1775-1475 cm⁻¹). $C_{pep} = 320 \ \mu M$.

Fig. S11 Raw FT-Raman spectra of the studied peptides in the range of 3600-400 cm⁻¹. $C_{pep} = 320 \ \mu M$.

Fig. S12 Normalized FT-Raman spectra of the studied peptides smoothed with SG 35 (see Methods), in the wavenumber range of 1375–1175 cm⁻¹ (Amide III). $C_{pep} = 320 \mu M$.

Fig. S13 The comparison of the normalized ATR-FTIR spectra after dissolving and after 30 days of incubation. $C_{pep} = 320 \ \mu M$.

Fig. S14 Frequency distributions of the peptides height observed by AFM.

Fig. S15 Electron micrographs with size measurements (in nm) of the obtained nanostructures after 30 days of incubation at 37 °C (magnification of 20 000). The yellow marks correspond to the length dimension, whereas the green dots indicate specific points for measuring the diameter. $C_{pep.} = 160 \mu M$.

Fig. S16 The studied peptides stained with Congo red and examined under crossed polarized light (see right column). The original magnification x200.

Fig. S17 Results of ThT fluorescence kinetic assay registered for the studied peptides.

Table S18 The mean values of relative fluorescence in the time range of 5 to 12 hours calculated for the studied peptides.

Sample	Relative fluorescence ± standard deviation [-]
1	29 018.83 ±17342.14
1_b	$149\ 775.52 \pm 62436.88$
1_c	$203\ 530.07 \pm 62893.68$
1_f	$208\ 124.59 \pm 51289.37$
2	$16\ 068.33 \pm 1606.03$
2_b	$15\ 086.78 \pm 844.59$
2_c	$16\ 152.38 \pm 4755.09$
2_f	243 411.35 ± 66.13