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I. The discrete network model 

A. Network initiation and spatiotemporal normalization 

The number of nodes, 𝒩 = 400, comprising each simulated network in this study was 

set based according to the domain size convergence findings of Fig. S1. First, a 2D 

volume element (VE) was defined with its center at Cartesian coordinates 𝑿 = [0,0] 

and square dimensions 𝐿 = (𝒩/𝜌)0.5 . eere, 𝜌  is a tuning parameter with units of 

[length]-2 used to modulate the domain density until a roughly zero stress state occurred 

once steady state bond dynamics were reached. This occurred when tensile entropic 

chain forces were approximately equilibrated with repulsive volume exclusion forces, 

both of which depend on the nominal node spacing. Nodes were initially seeded into 

the VE using a Poisson point process. To impart the networks with both stable and 

dynamic bonds, each node was then designated as one of three types: (i) a universal 

crosslinker, (ii) a stable bond crosslinker, or (iii) a dynamic bond crosslinker. This was 

done to mimic the composition of networks such as the hydrogels investigated by 

(Richardson, et al. 2019). Universal crosslinkers were permitted to bond with either 

stable or dynamic crosslinkers (to form stable or dynamic bonds, respectively). 

eowever, stable crosslinkers were not permitted to bond with dynamic crosslinkers, 

and no intraspecies bonding was permitted amongst any of the three node types. The 

fraction of universal crosslinkers was maintained at 50%. eowever, the fraction of 

crosslinker types comprising the remaining 50% of nodes was swept over the range of 

0 to 100% stable crosslinker.  

 
Figure S1. Domain size convergence confirmation: (A) Stress relaxation response with respect to time 

for the ensemble average of 𝑛 = 5  networks containing 𝒩 = {225, 400, 625, 900}  nodes and 𝑧 = 4 

crosslinking sites per node. Both stress and time are given in arbitrary, but non-normalized units to 

illustrate that the stress response agrees for all four domain sizes. Ensemble average values of the mean 

(B) number of attachments per node, 𝑧̅, (C) probability of dynamic bond percolation across the domain, 

�̅�𝑑, (D) detachment rate, �̅�𝑑, and (E) attachment rate, �̅�𝑎, all statistically converge for domains with 𝒩 ≥

225. This is confirmed for purely dynamic networks (𝑓 = 0, red), networks with 50% stable bonds (𝑓 =

0.5, grey), and purely stable networks (𝑓 = 1, cyan). Error bars represent standard error of the mean. 

Panel (A) confirms that the selected domain size of 𝒩 = 400  is statistically representative of the 

expected stress response, while (B-E) corroborate that it topologically representative. 
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Once the nodes were initially positioned and designated, they were permitted to 

associate and dissociate telechellically via the bond kinetics prescribed in Eqns. (1) and 

(2) of the manuscript. To reach steady state bond kinetics, reactions were allowed to 

occur (without applying any deformation to the VE) until a steady state coordination 

number and end-to-end chain distribution were reached. To ensure ample temporal 

resolution, the discretized timestep, Δ𝑡, was set at least two orders of magnitude smaller 

than the bond dissociation timescale, 𝑘𝑑
−1 . After every reconfiguration step, the 

networks were equilibrated per Eqns. (3)-(6) of the manuscript.  Note that the timescale 

of the discrete network model is in arbitrary units of time. Therefore, all values of 𝑘𝑑 

reported in the model are normalized by the central value investigated such that the 

normalized decadic input range is 𝑘𝑑 ∈ {0.01,0.1,1,10,100}. 

B. Rouse sub-diffusive scaling for bond association 

The sub-diffusive Rouse model for tethered stickers’ diffusion is adapted from (Stukalin, 

et al., 2013), which posits that the means-squared displacement of a danglin chain’s end 

scales as: 

⟨Δ𝑟2⟩ ≈ 𝑏2 (
𝑡

𝜏0
)

1

2
.              (S1) 

where 𝑏 is the Kuhn length size and 𝜏0 is the time it takes a monomer to diffuse distance 

𝑏 . Based on this, the 2D exploratory area undergone in time 𝑡  is simply ⟨Δ𝑟2⟩ . 

Following (Stukalin, et al., 2013), we take the distance between open crosslinks as 

𝑟𝑜𝑝𝑒𝑛 ≈ 𝑐𝑜𝑝𝑒𝑛
−1/𝐷

 , where 𝑐𝑜𝑝𝑒𝑛  is the open sticker concentration and 𝐷  is the model’s 

dimensionality (𝐷 = 2 for the discrete model). In the discrete model, the open sticker 

spacing, 𝑟𝑜𝑝𝑒𝑛, is coarsely, yet directly estimated on a pair-wise basis as the distance, 𝑑, 

between two nodes containing open stickers. Through (S1), the time, 𝜏𝑜𝑝𝑒𝑛, it takes an 

open sticker to traverse from one neighboring open sticker to another (i.e., to travel 

distance 𝑟𝑜𝑝𝑒𝑛) can be estimated as: 

𝑟𝑜𝑝𝑒𝑛 ≈ 𝑑 ≈ [𝑏2 (
𝜏𝑜𝑝𝑒𝑛

𝜏0
)

1

2
]

1

2

.            (S2) 

Solving (S2) for 𝜏𝑜𝑝𝑒𝑛 gives the renormalized open sticker lifetime as: 

𝑘𝑎
−1 = 𝜏𝑜𝑝𝑒𝑛 ≈ 𝜏0 (

𝑑

𝑏
)

4

,             (S3) 

where 𝑘𝑎 is the effective attachment rate, and the effects of open sticker concentration 

are captured through 𝑑, which is measured explicitly in the discrete model.  
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C. Applied loading history 

 

Figure S2. Applied Loading History: True strain, ln 𝜆, is plotted with respect to normalized time, 𝑡∗ =

𝑡𝑘𝑑. The inset displays ln 𝜆 versus 𝑡∗ (with a significantly dilated time axis) to illustrate the definition of 

𝜀̇/𝑘𝑑 = ln(𝜆) /𝑡∗, which was set to 100 to approximate elastic loading.  

  



5 
 

C. Parametric space 

Detailed parametric values and sweeping ranges for the discrete network model are 

provided in Tables S1 and S2, respectively. 

Table S1. Detailed parametric definitions and values for the discrete network model.  

Parameter Definition Swept Values Reason for Value 

𝒩 Nodes per domain 400 

Set to ensure convergence of stress 

response with respect to increasing 

domain size per (Wagner, et al. 2021) 

𝜁 
Normalization length 

scale 
√𝒩 

Set such that each node occupies on 

order of 1-unit length2 

𝐿∗ 
Initial square domain 

dimensions 
𝜁𝜌−0.5 

Set such that each node occupies on 

order of 1-unit length2 

𝜌∗ 

Scaling coefficient to 

adjust domain 

density 

1.78 

Set to equilibrate entropic tensile forces 

with volume exclusion in initial 

networks. 

𝜏0 
Kuhn segment 

diffusion timescale 
1 × 10−9 

Preserved from (Wagner, et al. 2021) 

𝑘𝑏𝑇 
Normalized thermal 

energy scale 
5 × 10−2 

𝑁 
Kuhn segments per 

chain 
700 

𝑏∗ 
Normalized Kuhn 

length 
5 × 10−3 

𝐸 

Force scaling 

coefficient to adjust 

repulsion magnitude 

1.25 

𝛾 

Scaling coefficient to 

adjust repulsion 

stiffness 

2 

𝑅∗ 

Normalized volume 

exclusion cutoff 

distance 

𝑁𝑏∗ 

𝜂∗ 

Normalized 

numerical damping 

viscosity 

1.5 × 10−4 

Δ𝑡∗ Discretized time Δ𝑡∗ < 0.01 ⋅ 𝑘𝑑
−1 

Set to ensure ample temporal resolution 

during reconfiguration 

Table S2. Detailed sweeping ranges of free parameters of the discrete network model. 

Parameter Definition Swept Values 

𝑓 Fraction of stable bonds. {0,10, … 90,100}% 

𝑘𝑑 Normalized detachment rate {0.01,0.1,1,10,100} 

𝑧 Functionality (i.e., no. of potential bonds per crosslink) {4,8} 
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II. Transient Network Theory Derivations 

A. Initial loading and stress normalization 

From the manuscript, the simple rule of mixture gives: 

𝝈 = 𝑘𝑏𝑇(𝑐𝑠𝒃 + 𝑐𝑑𝝁) + 𝜋𝑰,             (S4) 

where, 𝑐𝑠 = 𝑐𝑝𝑠𝑓 and 𝑐𝑑 = 𝑐𝑝𝑑(1 − 𝑓). We aim to normalize this stress by the peak 

stress, which occurs at the time of load rate cessation. Recalling that 𝝁  evolves 

according to Eqn. (8) of the manuscript: 

�̇� = 𝑳𝝁 + 𝝁𝑳𝑇 − 𝑘𝑑(𝝁 − 𝑰).            (S5) 

and given 𝜀̇ ≫ 𝑘𝑑, the rightmost term in (S5) approaches zero during loading, leaving: 

�̇� = 𝑳𝝁 + 𝝁𝑳𝑇,               (S6) 

where 𝑳 = �̇�𝑭−1, �̇� = 𝜕𝑭/𝜕𝑡, and 𝑭 = diag(𝜆−1, 𝜆). For uniaxial extension occurring 

in the second principal direction, we are concerned with the evolution of 𝜇22, which 

evolves according to: 

𝜕𝜇22

𝜕𝑡
= 2𝜇22𝜆−1 𝜕𝜆

𝜕𝑡
.              (S7) 

Integrating both sides with the condition 𝜇22(𝜆 = 1) = 1 gives: 

𝜇22 = 𝜆2 = 𝑏22,               (S8) 

for fast loading. Substituting (S8) into (S4) gives the stress component in the principal 

direction of stretch as: 

𝜎22
𝑚𝑎𝑥 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]𝜆2 + 𝜋.          (S9) 

Similar analysis in the direction normal to stretch gives: 

𝜎11
𝑚𝑎𝑥 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]𝜆−2 + 𝜋,          (S10) 

with the added traction-free boundary condition that 𝜎11 = 0. Solving for 𝜋 in (S10) 

and substituting into (S9) gives: 

𝜎22
𝑚𝑎𝑥 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)] (𝜆2 −

1

𝜆2).        (S11) 

B. Stress relaxation 

To induce stress relaxation, the strain rate is removed (i.e., 𝑳 = 𝟎 ) such that (S5) 

becomes: 

�̇� = −𝑘𝑑(𝝁 − 𝑰).              (S12) 

Taking the time at which stress relaxation begins as the reference time, 𝑡 = 0 , and 

solving (S12) for the principal components of 𝝁 gives: 

𝜇11 = (𝜇11
0 + 1)𝑒−𝑘𝑑𝑡 − 1,             (S13) 

and: 

𝜇22 = (𝜇22
0 + 1)𝑒−𝑘𝑑𝑡 − 1,            (S14) 
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where, from (S8), 𝜇11
0 = 𝜆−2  and 𝜇22

0 = 𝜆2  since 𝜀 ̇ ≫ 𝑘𝑑  during initial loading. 

Substituting (S13) and (S14) into (S4) gives the principal components of stress as: 

𝜎11 = 𝑐𝑘𝑏𝑇{𝑝𝑠𝑓𝜆−2 + 𝑝𝑑(1 − 𝑓)[(𝜆−2 + 1)𝑒−𝑘𝑑𝑡 − 1]} + 𝜋,    (S15) 

and: 

𝜎22 = 𝑐𝑘𝑏𝑇{𝑝𝑠𝑓𝜆2 + 𝑝𝑑(1 − 𝑓)[(𝜆2 + 1)𝑒−𝑘𝑑𝑡 − 1]} + 𝜋.     (S16) 

Applying the traction-free boundary condition (i.e., 𝜎11 = 0 ), solving for 𝜋 , and 

substituting 𝜋  into (S16) gives the principal component of stress in the extensile 

direction as: 

𝜎22 = 𝑐𝑘𝑏𝑇 (𝜆2 −
1

𝜆2) {𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡}.        (S17) 

Finally, normalizing (S17) by (S11) provides the normalized tensile stress as: 

𝜎∗ = [𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡][𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]−1.      (S18) 

C. Incorporating the coupling parameter 

Supposing that some fraction of stable bonds, 1 − 𝜉 , are sufficiently jammed by 

surrounding crosslinks or bonded into a stable bond scaffold such that they affinely 

follow the global deformation gradient, 𝑭 , without relaxation (while the remaining 

fraction, 𝜉, can relax into lower energy conformations), then we may rewrite Eqn. (S4) 

as:   

𝝈 = 𝑐𝑘𝑏𝑇[𝑝𝑠𝑓(1 − 𝜉)𝒃 + 𝑝𝑠𝑓𝜉𝝁 + 𝑝𝑑(1 − 𝑓)𝝁] + 𝜋𝑰.       (S19) 

As a simple first assumption, we have invoked that the rate of stable bond relaxation 

due to conformational change is synonymous with that of bond dissociation of 

neighboring dynamic bonds (i.e., 𝑘𝑑) through 𝝁. Thus, during elastic loading, 𝝁 → 𝒃 

and (S19) reverts to Eqn. (9). As before, the condition that 𝜎11 = 0 , along with the 

definitions of 𝝁 from (S13) and (S14) are used to solve for 𝜋, which then allows that 

component of stress in the extensile direction be written: 

𝜎22 = 𝑐𝑘𝑏𝑇 (𝜆2 −
1

𝜆2) [𝑝𝑠𝑓(1 − 𝜉) + 𝑝𝑠𝑓𝜉𝑒−𝑘𝑑𝑡 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡].  (S20) 

Once again normalizing (S20) by (S11) gives the normalized tensile stress as:  

𝜎∗ = [𝑝𝑠𝑓(1 − 𝜉) + 𝑝𝑠𝑓𝜉𝑒−𝑘𝑑𝑡 + 𝑝𝑑(1 − 𝑓)𝑒−𝑘𝑑𝑡][𝑝𝑠𝑓 + 𝑝𝑑(1 − 𝑓)]−1. (S21) 

D. Hybrid networks with two dissociation timescales 

Supposing that a hybrid network is comprised of two different types of dynamic bonds 

with two distinct dissociation timescales, 𝑘𝛽
−1 and 𝑘𝛼

−1, such that that the former types of 

bonds detach significantly slower than the latter (i.e., 𝑘𝛽 ≪ 𝑘𝛼). Then Eqn. (11) may be 

rewritten as:    

𝝈 = 𝑐𝑘𝑏𝑇[𝑝𝛽𝑓(1 − 𝜉)𝝁𝛽 + 𝑝𝛽𝑓𝜉𝝁𝛼 + 𝑝𝛽(1 − 𝑓)𝝁𝛼] + 𝜋𝑰.     (S22) 
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where 𝝁𝛼 and 𝝁𝛽 and are the conformation tensors of the chains adjoined by more and 

less dynamic bonds, respectively. During stress relaxation, these conformation tensors 

evolve according to �̇�𝛽 = −𝑘𝛽(𝝁𝛽 − 𝑰)  and �̇�𝛼 = −𝑘𝛼(𝝁𝛼 − 𝑰) . In (S22), we have 

assumed that the coupled stress term relaxes at the faster dissociation rate of the more 

dynamic bonds (i.e., at a rate 𝑘𝛼) since the dissociation of the more stable bonds is 

considerably slower (i.e., 𝑘𝛽 ≪ 𝑘𝛼). 

eere we apply simple shear conditions to approximate the parallel plate rheometry 

conducted by (Richardson, et al. 2019) for which: 

𝑭 = [
1 𝛾 0
0 1 0
0 0 1

],               (S23) 

and: 

𝑳 = [
0 �̇� 0
0 0 0
0 0 0

],               (S24) 

where 𝛾 is the peak shear strain and �̇� is the shear rate. Again, during loading (�̇� ≫ 𝑘𝛼 

and �̇� ≫ 𝑘𝛽), 𝝁𝛽 → 𝒃 and 𝝁𝛼 → 𝒃, giving (S22) as: 

𝝈 = 𝑐𝑘𝑏𝑇[𝑝𝛽𝑓 + 𝑝𝛼(1 − 𝑓)]𝒃 + 𝜋𝑰.          (S25) 

Solving for 𝒃 = 𝑭𝑭𝑇 and substituting into (S25) gives the peak shear stress as: 

𝜎12 = 𝑐𝑘𝑏𝑇[𝑝𝛽𝑓 + 𝑝𝛼(1 − 𝑓)]𝛾.          (S26) 

During stress relaxation (i.e., 𝑳 = 𝟎), given relatively small shear strain (𝛾 ∼ 0.1) then 

the principal orientation of chain stretch remains relatively unaffected, and we may 

uphold the general relation (S26) for both dynamic bond types (i.e., the shear 

components may be written 𝜇𝛽 ≈ exp(−𝑘𝛽𝑡)  and 𝜇𝛼 ≈ exp(−𝑘𝛼𝑡) ). Therefore, the 

shear component of stress from (S22) may be written as follows during stress relaxation: 

𝜎12 = 𝑐𝑘𝑏𝑇[𝑝𝛽𝑓(1 − 𝜉)𝑒−𝑘𝛽𝑡 + 𝑝𝛽𝑓𝜉𝑒𝑘𝛼𝑡 + 𝑝𝛼(1 − 𝑓)𝑒−𝑘𝛼𝑡]𝛾.   (S27) 

Normalizing (S27) by the peak shear stress from (S26) gives: 

𝜎∗ = [
𝑝𝛽𝑓(1 − 𝜉)𝑒−𝑘𝛽𝑡 + 𝑝𝛽𝑓𝜉𝑒−𝑘𝛼𝑡 + ⋯

… 𝑝𝛼(1 − 𝑓)𝑒−𝑘𝛼𝑡
] [𝑝𝛽𝑓 + 𝑝𝛼(1 − 𝑓)]

−1
.    (S28) 

E. Bond Lifetime Renormalization and Bell’s Theory 

The experimental stress relaxation data provided by (Richardson, et al. 2019) exhibits 

a variable relaxation rate with faster relaxation at shorter timescales. A possible origin 

of slower long-tail relaxation is that of bond lifetime renormalization (Stukalin, et al. 

2013), which suggests that the emergent relaxation rate of a transient polymer network 
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is not necessarily the intrinsic bond dissociation rate, 𝜏𝑖
−1, but rather the rate at which 

bonds detach from one configuration and reattach into another. Thus, the effective or 

“renormalized” bond lifetime governing dissipation is actually: 

𝜏𝑖
𝑟𝑛 ≈ 𝐽(𝜏𝑜𝑝𝑒𝑛)𝜏𝑖 + 𝜏𝑜𝑝𝑒𝑛,            (S29) 

where 𝐽(𝑡) is the number of instances a given bonding pair breaks and reattaches into 

the same configuration over the duration of time, 𝑡, and 𝜏𝑜𝑝𝑒𝑛 is the amount of time it 

takes for an unbound end group or “sticker” to diffuse the distance, 𝑟𝑜𝑝𝑒𝑛 , between 

adjacent open stickers. Note that 𝑟𝑜𝑝𝑒𝑛 ≈ 𝑐𝑜𝑝𝑒𝑛
−1/3  where 𝑐𝑜𝑝𝑒𝑛  is the open sticker 

concentration. Prescribing Rouse sub-diffusive behavior, then the mean-square 

displacement of a sticker may be written as: 

⟨Δ𝑟2(𝑡)⟩ ≈ 𝑏2 (
𝑡

𝜏0
)

1/2 

,             (S30) 

where 𝑏 is the Kuhn length or length scale of a sticker, and 𝜏0 is the time it takes a 

sticker to diffuse a distance 𝑏. Therefore, the time of diffusion over distance 𝑟𝑜𝑝𝑒𝑛 may 

be estimated from: 

𝑟𝑜𝑝𝑒𝑛 ≈ ⟨Δ𝑟2(𝜏𝑜𝑝𝑒𝑛)⟩
1/2

≈ 𝑏 (
𝑡

𝜏0
)

1/4

,          (S31) 

giving: 

𝜏𝑜𝑝𝑒𝑛 ≈ 𝜏0 (
𝑟𝑜𝑝𝑒𝑛

𝑏
)

4

.              (S32) 

Supposing there is no long-range attraction between binding sites, then a bond reforms 

when two open stickers diffuse into the same volume at the length scale of a Kuhn 

segment, 𝑏. Therefore, the mean number of times a bond will break and reform into the 

same configuration over 𝑛(𝑡) steps (of duration 𝜏0) may be estimated as the number of 

times they diffuse into the same explored space. Thus: 

𝐽(𝑡) ≈
𝑛(𝑡)𝑏3

⟨Δ𝑟2(𝑡)⟩3/2,               (S33) 

where ⟨Δ𝑟2(𝑡)⟩3/2 ⋅ 𝑏−3 is the approximate volume explored during 𝑡. Therefore, the 

number of repeated binding instances occurring in time 𝜏𝑜𝑝𝑒𝑛 is approximately: 

𝐽(𝜏𝑜𝑝𝑒𝑛) ≈
𝑟𝑜𝑝𝑒𝑛

𝑏
,               (S34) 

where we have applied the definition of ⟨Δ𝑟2(𝜏𝑜𝑝𝑒𝑛)⟩  through (S30), substituted 

𝜏𝑜𝑝𝑒𝑛/𝜏0  for 𝑛(𝜏𝑜𝑝𝑒𝑛) , and simplified the expression. Substituting Eqns. (S32) and 

(S34), as well as the force-adjusted Arrhenius-like relation from Eqn. (15) into (S29) 

gives the renormalized lifetime of bond type 𝑖 as: 

𝜏𝑖
𝑟𝑛 ≈ 𝜏0 (

𝑟𝑜𝑝𝑒𝑛

𝑏
) [𝐾𝑖

0 exp (−
3Δ𝑥

√𝑁𝑏
�̅�) + (

𝑟𝑜𝑝𝑒𝑛

𝑏
)

3

].       (S35) 

where �̅� is the magnitude of mean chain stretch, and Δ𝑥 is distance from the equilibrium 

bond length to the activation barrier. The exponential prefactor 𝐾𝑖
0 = exp(𝜀𝑖/𝑘𝑏𝑇) 

(where 𝑘𝑏 is the Boltzmann constant, 𝑇 is temperature) is a dimensionless parameter 
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that encapsulates the intrinsic bond activation energy, 𝜀𝑖, and defines the mean bond 

lifetime (𝐾𝑖
0𝜏0) of a Gaussian chain in an equilibrated network (i.e., when �̅� → 1).  

At this stage, we must distinguish between the bond types, aez and bez, as these 

express different open sticker concentrations, which are taken as proportionate to the 

overall open sticker concentration, 𝑐𝑜𝑝𝑒𝑛, and the respective fraction of each bond type, 

giving 𝑐𝛼 ≈ 𝑐𝑜𝑝𝑒𝑛(1 − 𝑓)  for aez and 𝑐𝛽 ≈ 𝑐𝑜𝑝𝑒𝑛𝑓  for bez. As such, the distances 

between open stickers for each respective population may be written as: 

𝑟𝑜𝑝𝑒𝑛
𝛼 ≈ [𝑐𝑜𝑝𝑒𝑛(1 − 𝑓)]

−1/3
,             (S36) 

and: 

𝑟𝑜𝑝𝑒𝑛
𝛽

≈ (𝑐𝑜𝑝𝑒𝑛𝑓)
−1/3

,              (S37) 

such that the renormalized lifetimes of each bond type are: 

𝜏𝛼
𝑟𝑛 ≈

𝜏0

[𝑐𝑜𝑝𝑒𝑛
∗ (1−𝑓)]

1/3 [𝐾𝛼
0 exp (−

3Δ𝑥

√𝑁𝑏
�̅�) +

1

𝑐𝑜𝑝𝑒𝑛
∗ (1−𝑓)

].      (S38) 

 

and: 

𝜏𝛽
𝑟𝑛 ≈

𝜏0

(𝑐𝑜𝑝𝑒𝑛
∗ 𝑓)

1/3 [𝐾𝛽
0 exp (−

3Δ𝑥

√𝑁𝑏
�̅�) +

1

𝑐𝑜𝑝𝑒𝑛
∗ 𝑓

].        (S39) 

where 𝑐𝑜𝑝𝑒𝑛
∗ = 𝑐𝑜𝑝𝑒𝑛𝑏3 is the open bond concentration normalized by the characteristic 

Kuhn volume, 𝑏3. 

 To utilize (S38) and (S39) given the normalized stress data provided by 

(Richardson, et al. 2019) we must relate the force in a single chain to the global stress 

state measured in experiments. Following the virial formulation (Wagner, et al. 2022), 

the network’s ensemble Cauchy stress may be computed from the integral over the 

chain space, Ω, as: 

𝝈 =
3𝑘𝑏𝑇𝑐

2𝒩
∫ (𝝀 ⊗ 𝝀)

𝑉
.              (S40) 

where 𝒩/𝑐 is the total volume of a population of 𝒩 chains at a concentration of 𝑐. 

Supposing that stretch is homogenously distributed throughout the network and 

normally distributed about the mean, then the local stretch state in a single chain may 

be well-represented by the mean stretch, �̅�, such that (Vernerey, et al. 2017): 

𝝈 ≈
3

2
𝑐𝑘𝑏𝑇(�̅� ⊗ �̅�).              (S41) 

Therefore, the shear component of stress measured in experiments may be 

approximated as: 

𝜎12 ≈ 3𝑐𝑘𝑏𝑇�̅�2 sin(2𝛾),             (S42) 

where – given simple shear conditions – we have assumed no radial stretch (i.e., 𝜆3 =
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1 ), and invoked that 𝜆1 = �̅� sin 𝛾 , 𝜆2 = �̅� cos 𝛾 , and �̅� = √1 + 𝛾2  for the strain 

magnitude, 𝛾. Normalizing (S42) by (S27) gives the normalized stress as: 

𝜎∗ ≈
3�̅�2 sin(2𝛾)

[𝑝𝛽𝑓+𝑝𝛼(1−𝑓)]𝛾
,              (S43) 

where the fractions of attached aez or bez bonds are assumed roughly equal as 𝑝𝛼 ≈

𝑝𝛽 ≈ 1 − 𝑐𝑜𝑝𝑒𝑛
∗ /𝑐∗, and 𝑐∗ = 𝑐𝑏3 is the normalized concentration of all attached chains.  

Solving for �̅�  in (S43), substituting into (S38) and (S39), and then simplifying 

gives the renormalized bond lifetimes as:  

𝜏𝛼
𝑟𝑛 ≈

𝜏0

[𝑐𝑜𝑝𝑒𝑛
∗ (1−𝑓)]

1/3 [𝐾𝛼
0 exp (−√

𝜎∗

𝜎0
∗) +

1

𝑐𝑜𝑝𝑒𝑛
∗ (1−𝑓)

],       (S44) 

and: 

𝜏𝛽
𝑟𝑛 ≈

𝜏0

(𝑐𝑜𝑝𝑒𝑛
∗ 𝑓)

1/3 [𝐾𝛽
0 exp (−√

𝜎∗

𝜎0
∗) +

1

𝑐𝑜𝑝𝑒𝑛
∗ 𝑓

].        (S45) 

eere 𝜎0
∗, is a stress sensitivity parameter given by: 

𝜎0
∗ = (

𝑏

Δ𝑥
)

2 𝑁 sin(2𝛾)

3𝑝𝛾
,              (S46) 

that lumps together the effects of applied strain (𝛾), attached chain fraction (𝑝 = 1 −
𝑐𝑜𝑝𝑒𝑛

∗ /𝑐∗), and chain length (through 𝑁 and 𝑏). Supposing a high fraction of the chains 

are always attached 𝑝 ∼ 1   estimating 𝑁 ≈ 88  based on the molecular weight of 

macromers used in experiments (𝑀𝑤 = 8,000 g mol−1), the number of branches per 

macromer (𝑧 = 8), and the molar mass of ethylene glycol (44.05 g mol−1) (Wagner, et 

al. 2022)  and given an experimental strain of 𝛾 = 0.1 , then the normalized bond 

activation length may be estimated by: 

𝑥∗ =
Δ𝑥

𝑏
= √

𝑁 sin(2𝛾)

3𝑝𝛾
𝜎0

∗ ≈ 10.8√𝜎0
∗.          (S47) 

Inverting (S44) and (S45) provides the characteristic relaxation times associated 

with each bond type as expressed in Eqns. (16) and (17) of the manuscript. 

𝑘𝛼 ≈
[𝑐𝑜𝑝𝑒𝑛

∗ (1−𝑓)]
1
3

𝜏0
[𝐾𝛼

0 exp (−√
𝜎∗

𝜎0
∗) +

1

𝑐𝑜𝑝𝑒𝑛
∗ (1−𝑓)

]
−1

,       (S48) 

and: 

𝑘𝛽 ≈
(𝑐𝑜𝑝𝑒𝑛

∗ 𝑓)
1/3

𝜏0
[𝐾𝛽

0 exp (−√
𝜎∗

𝜎0
∗) +

1

𝑐𝑜𝑝𝑒𝑛
∗ 𝑓

]
−1

.        (S49) 

Using Eqns. (S28), (S48), and (S49), stress relaxation responses are computed in 

discretized time using an explicit forward Euler approach, with a timestep of Δ𝑡 = 36 

s, which was iteratively reduced (over Δ𝑡 ∈ {360,180,36,18} s) until the results of the 

fitted parameters expressed less than a 1% change from the previous timestep size. 
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F. Parametric fitting 

For parametric fitting, thirteen values for each parameter were sampled from a normal 

distribution about some mean initial guesses. The model stress was then computed for 

each combination of parameters, and whichever yielded the coefficient of determination 

closest to unity (min(|1 − 𝑅2|) ), was then taken as a new set of mean distribution 

values from which parameters were sampled. Non-physical values (e.g., 𝜉 > 1 , 

𝑐𝑜𝑝𝑒𝑛
∗ < 0 , etc.) were excluded from the parameter space. Note that to ensure 

convergence, nominal or mean values of the distributions from the previous iteration 

were always included when probing the stress response. Each time the mean values of 

the distributions yielded the lowest error, the standard deviations of the distributions 

were reduced by a factor of 0.97. Iteration was carried out until the coefficient of 

determination, 𝑅2 > 0.995. 
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III. Extended Network Model Results & Interpretations 

A. Bond Dynamics, Percolation, & the Relaxation Factor 

Fig. S3 depicts the average measured bond dynamics over 𝑛 = 10  simulations for 

networks with varied values of 𝑓 and 𝑘𝑑.  

 

Figure S3. Bond Dynamics as Measured from Discrete Model: (A-B) To verify consistency between 

the two modeling approaches, Average dynamic bond dissociation rate, 𝑘𝑑, is plotted with respect to the 

stable bond fraction, 𝑓, and input value of detachment rate, 𝑘𝑑, when coordination is (A) 𝑧 = 4 and (B) 

𝑧 = 8. (C-D) Average dynamic bond association rate, 𝑘𝑎, is plotted with respect to 𝑓 and 𝑘𝑑 for (C) 𝑧 =

4 and (D) 𝑧 = 8. (E-F) Steady state attached dynamic bond fraction, 𝑝𝑑 = 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑), is plotted with 

respect to 𝑓 and 𝑘𝑑 for (E) 𝑧 = 4 and (F) 𝑧 = 8. 

As expected, measured values of average 𝑘𝑑 agree with the a priori values input into 

the discrete model. Furthermore, 𝑘𝑑 is uncorrelated with stable bond fraction, 𝑓 (Fig. 

S3.A-B) corroborating that the dissociation timescale is the same for the various curves 

(representing different values of 𝑓) in Fig. 2 or 4. In contrast, 𝑘𝑎 is directly correlated 

with 𝑘𝑑 and inversely correlated with 𝑓 (Fig. S3.C-D). This is because open bonds may 

only attach to neighboring open sites within a radial distance of the maximum chain 

length. Since, the number of attachment opportunities at a given time scales with 𝑘𝑑, 

so too does 𝑘𝑎. This effect is reflected in 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑), which indicates the steady state 

probability that a given dynamic bond is attached (Fig. S3.E-F). It occurs due to a 

prescribed polymer diffusion timescale, 𝜏0, (and therefore bond association timescale) 

that is significantly lower than the bond dissociation timescale (i.e., 𝑘𝑑 ≪ 𝑘𝑎). While 



14 
 

𝑘𝑎/(𝑘𝑎 + 𝑘𝑑) remains close to unity and appears relatively independent of 𝑘𝑑 when 

𝑘𝑑 ∼ 0.01 to 10, it decreases substantially when the dissociation rate is high (e.g., 𝑘𝑑 ∼

100). This suggests that the intrinsic association rate, 𝑘𝑎, is somewhere on the order of 

10 and that discrete network results should therefore only be considered for the cases 

in which 𝑘𝑑 ≤̃ 10, exhibiting high network connectivity. 

Regarding the effects of stable bond fraction on bond dynamics, increasing 𝑓 

reduces the number of dynamic bonding opportunities and therefore decreases the 

effective 𝑘𝑎 (Fig. S3.C-D). Since 𝑘𝑎 is lower for higher values of 𝑓, 𝑘𝑎/(𝑘𝑎 + 𝑘𝑑) is 

as well (Fig. S3.E-F), which influences the probability of dynamic bond percolation as 

discussed below. Interestingly, coordination has negligible influence on the measured 

bond dynamics. eowever, this independence is likely contingent on the allowance of 

redundant bonds between neighboring nodes, which ensures that 𝑘𝑎 is more influenced 

by the number and distribution of nodes (as they govern bonding opportunities) than 

the total number of bonds. The relative independence of 𝑘𝑎 and 𝑘𝑑 is also reflected by 

the highly similar plots of attached bond probabilities, 𝑃𝑠 = 𝑝𝑠𝑓, 𝑃𝑑 = 𝑝𝑑(1 − 𝑓), and 

𝑃 = 𝑃𝑠 + 𝑃𝑑  in Fig. S4. eowever, 𝑃𝑑 (and therefore 𝑃) is slightly smaller (i.e., there 

are more dangling dynamic chains) at high 𝑘𝑑  ( 𝑘𝑑 = 10  or 100 ) and higher 

coordination (𝑧 = 8), which suggests that attachment opportunities are saturated at the 

higher coordination number.  

 

Figure S4. Bond Attachment Probabilities from Discrete Model: (A-B) The average probability that 

a bond is stable and attached, 𝑃𝑠 = 𝑓𝑝𝑠, is plotted with respect to the stable bond fraction, 𝑓, and input 

value of detachment rate, 𝑘𝑑 , when maximum coordination is (A) 𝑧 = 4  and (B) 𝑧 = 8 . (C-D) The 

average probability that a bond is dynamic, 𝑃2 = (1 − 𝑓)𝑝2, and attached is plotted with respect to 𝑓 

and 𝑘𝑑 for (C) 𝑧 = 4 and (D) 𝑧 = 8. (E-F) The probability that a given bond is attached, 𝑃 = 𝑃𝑠 + 𝑃𝑑, 

is plotted with respect to 𝑓 and 𝑘𝑑 for (E) 𝑧 = 4 and (F) 𝑧 = 8. 

Fig. S5 depicts the average probabilities (over 𝑛 = 10 simulations each) that the 

independent bond types form percolated networks when 𝑓 and 𝑘𝑑 are swept. Fig. S5.A-
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B confirms that the probability of stable bond percolation is not strongly dependent on 

𝑘𝑑 . Going from 𝑧 = 4  to 𝑧 = 8 , the stable bond percolation threshold (i.e., lowest 

fraction of bonds at which the networks may percolate) shifted to lower relative 

fractions of stable bonds, from approximately 𝑓 ∼ 0.3  to 𝑓 ∼ 0.2 . eeanwhile, Fig. 

S5.C-D confirms that dynamic bond percolation is highly dependent on 𝑘𝑑, with higher 

values of 𝑘𝑑  universally decreasing the probability that the dynamic bonds form a 

percolated network. Going from 𝑧 = 4 to 𝑧 = 8 the percolation threshold undergoes a 

shift from 1 − 𝑓 ∼ 0.3 to 1 − 𝑓 ∼ 0.2. This directly mirrors the shift observed for the 

stable bond percolation threshold. 

 

Figure S5. Decoupled Network Percolation Probabilities: (A-B) The average probability that the 

stable bonds independently form a percolated network, 𝑋𝑠, is plotted with respect to stable bond fraction, 

𝑓, and input value of detachment rate, 𝑘𝑑, when maximum coordination is (A) 𝑧 = 4 and (B) 𝑧 = 8. (C-

D) The average probability that the dynamic bonds independently form a percolated network, 𝑋𝑑, is 

plotted with respect to 𝑓 and 𝑘𝑑 for (C) 𝑧 = 4 and (D) 𝑧 = 8.  

Fig. S6 depicts the average (𝑛 = 10) fitted values of 1 − 𝜉, which represents the 

extent to which stable bonds are unable to relax, when 𝑓 and 𝑘𝑑 are swept. The scaling 

law given by Eqn. (13) is fitted to each discrete data set, where 𝜂 represents the fraction 

of stable bonds that remain unable to relax in the limit 𝑓 → 0. Generally, 𝜂 decreases 

as the dissociation rate increases, intuitively suggesting that higher bond dynamic beget 

lower fractions of topologically constrained stable bonds when 𝑓 ∼ 0.1. Notably, 𝜉 is 

not well predicted by Eqn. (13) when 𝑧 = 8, which is attributed to the fact that dynamic 

bonds in these networks saturate the bond attachment opportunities such that there 

exists a greater degree of dangling stable bonds than in the networks with 𝑧 = 4 . 

Consequently, this reduces the effective fraction of attached stable bonds that are unable 

to relax at higher stable bond concentrations (Fig. S6.B) below the expected asymptotic 

limit, 1 − 𝜉 = 𝑓 (𝜂 → 0). 
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Figure S6. Effect of network coordination on stable bond relaxation: (A-B) The stable bond non-

relaxation degree, 1 − 𝜉, is plotted with respect to 𝑓 for the ensemble average of 𝑛 = 10 networks with 

(A) 𝑧 = 4 and (B) 𝑧 = 8.  

B. Effects of Chain Length 

A topologically influential parameter hypothesized to influence stable bond relaxation 

is the length of the chains. As such, chains with normalized lengths of 𝐿∗ = 0.5 and 

𝐿∗ = 2 (where 𝐿∗ is the contour length of a chain, 𝑁𝑏, normalized by the contour length 

of chains investigated in the main manuscript) were used to generate and test the stress 

relaxation of discretely modeled networks. Networks were generated and mechanically 

tested using the same procedure as earlier experiments (wherein 𝐿∗ = 1). The coupled 

ROe was subsequently fit to the data treating 𝜉 as a fitting parameter. Stress relaxation 

results for shorter and longer chains are depicted in Fig. S7.A and S7.B, respectively. 

While the coupled ROe can predict the stress relaxation of the networks of longer 

chains without significant error, it is unable to do so for the networks of shorter chains 

at early stages of the relaxation process during which the discrete model relaxes 

significantly faster than the coupled ROe predicts through 𝑘𝑑.  

 
Figure S7. Fitting the coupled ROM to networks with variable chain length: (A) Normalized stress, 

𝜎∗ , is plotted with respect to normalized time, 𝑡∗ , for the ensemble average of 𝑛 = 10  discrete 

simulations (solid curves with shaded S.E.) and as predicted by Eqn. (12) (dotted curves) when 𝑘𝑑 = 1 

and chain length is doubled (𝐿∗ = 2). (C-D) Absolute errors between the models’ 𝜎∗ are plotted with 

respect to 𝑡∗ for (C) 𝐿∗ = 0.5 and (D) 𝐿∗ = 2 (where 𝐿∗ is the chain contour length normalized by the 

original chain length investigated). 
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The likely cause of this discrepancy is revealed by examining the degree of percolation 

in these short chain networks (Fig. S8.A). Fig S8.A indicates that even when 𝑓 = 1, 

the stable bonds in the domain do not form percolated networks with 100% probability. 

As such, it is likely that stable bonds in short chain networks experience less entropic 

penalty (i.e., reduced conformational degrees of freedom) due to network structure, and 

are instead only constrained by steric interactions. The short timescale of relaxation that 

exists even for entirely stable bond networks likely results from floppy modes of cluster 

reconformation and indicates that these networks are not sufficiently equilibrated 

during loading. eere, this is a numerical artifact and indicates that for short chain 

networks in which inter-chain volume exclusion interactions dominate network 

topology, a lower residual force criterion is needed during equilibration. Alternatively, 

in systems with low connectivity loaded at rates exceeding the rate of floppy relaxation, 

another stress term governed by a shorter relaxation timescale may be necessary to 

include in the coupled ROe. Without this term, the coupled ROe should be applied 

only to percolated networks. 

 

Figure S8. Effect of chain length on bond percolation: (A-B) The probability that the stable (cyan) 

and dynamic (red) bonds independently form geometrically percolated networks (𝑋𝑠 and 𝑋𝑑) are plotted 

with respect to 𝑓 for (A) 𝐿∗ = 0.5 and (B) 𝐿∗ = 2 when 𝑧 = 4 and 𝑘𝑑 = 1. (G-H) The regions shaded 

grey demark transition zones wherein simultaneous percolation of both bond types is possible (𝑋 > 0). 


