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A. INTERACTION POTENTIAL

We use a regularised inverse power law 1/r!? pairwise additive potential [1] with
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The coefficients cg, ¢1, and ¢y make the potential and its first two derivatives continuous at the cutoff distance r. —
which is needed by the conjugate gradient minimisation method — and the pair interaction is slightly non-additive to
improve the glass-forming ability of the system. The continuity of the second derivative of the potential is a necessary
condition for the convergence of our conjugate gradient algorithm.

B. ELASTIC DISPLACEMENTS

We consider the Hessian matrix H with elements
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where Greek indices are used for spatial dimensions and Latin indices for particles. Eq. (12) is equivalent to
- Z Hl‘%jg(sTg + Ei'y =0 (BQ)
3,0
and can be inverted as
0riy = Y (H V)i j6Ejs- (B3)

J:6

The Hessian matrix H is symmetric and real-valued so that, by virtue of the spectral theorem, there exists an
orthonormal basis of eigenvectors e,, associated with eigenvalues A,, that diagonalises it:

Hi’y,jé = ZAaea,mea,jg. (B4)

Introducing the projection of the affine force along eigenvector e,,
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and employing the diagonalised form of the Hessian, Eq. (B3) then becomes
Oriy = EQA;16a7i7. (B6)

Here we have implicitly omitted eigenvectors with zero eigenvalues A, = 0: these correspond to translations, which
are explicitly excluded from ¢r;, as we work in the centre-of-mass frame.

We now approximate the eigenvectors of H as the transverse and longitudinal plane wave eigenstates of the Navier
operator [2, 3] for the displacement field in an elastic medium, with the associated eigenvalues proportional to the
square of the wavevector,
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where o = ||, L is the polarisation direction, k.., = (2rm/L,27n/L) is the wavevector, il = Kmn/|kmn|, and

kL =e. x k!, The displacement field (B6) can then be written as
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which is equivalent to Eq. (14).

We have checked numerically that the approximate plane wave eigenvectors are still orthonormal to O(1/N), and
that the projections of the affine forces E; onto both the exact and the approximate eigenvectors of the Hessian H all
have the same variance within statistical accuracy.

C. RESIDUAL FORCE

We compute the Taylor expansion of the force at time ¢:

=VU(r(t)) = =VU((r(t) = 7(0)) +r(0)) = =VU(r(0)) — H(0)(r(t) — r(0)) + O(|r(t) — 7(0)*) (1)
= *VU(T(O)) + flin(t) + fres(t)

where H(0) is the Hessian matrix computed at time 0, fi,(t) = —H(0)(r(t) — 7(0)) is the elastic (linear) force
corresponding to the displacement field r(t) — 7(0), and fres(t) is the residual force. The effective potential energy
Uesr (7) is minimised at all times, therefore

— VU(r(t) +p(t) — p(t) = =VU(r(0)) + p(0) — p(0) = 0
& fres(t) = —fiin (1) — [(p(t) = P(1)) — (p(0) — p(0))] (C2)
& fres(t) = H(0)(r(t) —7(0)) — [(p(t) — p(1)) — (p(0) — p(0))].
One sees that fres(t) vanishes if and only if the displacement associated with the change in propulsion is purely elastic.

We plot in Fig. C1 the log-distribution of | fies(t)| for different rescaled times ¢’ = t/7,. At intermediate times, the
log-distribution is bimodal, with the 2 peaks separated by the value | fies| /= 20. This is similar to what is observed for
supercooled liquids (Ref. [4], Fig. SM4), and we thus use | fies| = 20 as the threshold to identify rearranging particles.
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FIG. C1. Log-distribution of residual force (C2) for different lag times t' = t/7,.
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