
Supplementary Information: 3-D rotation

tracking from 2-D images of spherical colloids

with textured surfaces

Vincent Niggel, Maximilian R. Bailey, Carolina van Baalen, Nino Zosso, and

Lucio Isa∗

Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich,

CH-8093, Zurich, Switzerland

E-mail: lucio.isa@mat.ethz.ch

1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2023

lucio.isa@mat.ethz.ch

Particle characterization and imaging

Figure SI1: (A) SEM image of the core silica particles (diameter = 3.5 µm). (B) SEM
image of a fluorescent raspberry particle (diameter = 4 µm). Scale bar: 2 µm - both (A)
and (B). (C) AFM topography image of the surface a raspberry particle, used to measure
its roughness (units in µm). (D) Fluorescence image of a raspberry particle. The random
distribution of fluorescent asperities forms a unique pattern that allows tracking rotation.
Scale bar: 2 µm.

Figure SI2: (A) Images of the setup for the particles flowing in a capillary channel. (B)
Sketch of the experimental setup used for the particles imaged at a water/oil interface.

2

Figure SI3: Fluorescence z-stacks of raspberry particles taken at different heights in the
sample (A: -2.99 µm, B: -2.53µm, C: -1.93 µm, D: -1.60 µm, E: -1.07 µm, F: -0.60 µm, G:
0.06 µm, H: 0.99 µm, I: 1.92 µm, J: 2.65 µm, K: 3.65 µm). The best imaging conditions to
track rotation are in image C.

Figure SI4: Time series of fluorescence micrographs of a particle rolling in a capillary channel
under flow. The rotation of the particle causes a change of randomly distributed intensity
signal generated by the fluorescent berries attached on the particle surface.

3

Simulation and rotation of model raspberry particles

MATLAB code to simulate fluorescent raspberry particles

The workflow illustrated in Figure SI5 shows the general idea used to create the projection

images of a textured spherical surface.

Figure SI5: We first discretize the sphere’s surface before adding a defined texture to it:
each point on our discretized surface is associated to a pixel intensity. The sphere surface is
than rotated by a given angle before creating the projection of its upper part on the image
plane. The image is finally saved before repeating the process for a different rotation, until
all desired rotated images are saved.

We outline below the code used to generate simulated raspberry particles to test the

3-D rotation registration algorithm against ground truth. Briefly, berries are represented as

bright spots on a dark background, in analogy with the experimental fluorescence images

of the particles. We first generate a mesh of equidistributed points on a sphere. Berries

are then randomly added in an iterative process by rotating the mesh by discrete angles

to a specified grid point onto which the berry is placed. This process is repeated until

the desired amount of berries is present on the surface of the sphere. A partial overlap

of the berries is allowed to mimic the experimental situation where, even if the fluorescent

asperities cannot interpenetrate, their fluorescent signals can overlap. After creating the 3-D

raspberry particle, images representative of the experimental micrographs can be obtained

by projecting the surface of the simulated particle onto the ”focal” plane by interpolation.

4

By subsequently rotating the simulated raspberry particle in 3-D space and projecting the

corresponding surface, representative images for different rotations are generated.

The first section of the code defines different parameters used in the simulation.

• imsize = final size of the simulated image (see Figure SI6)

• angle view (see Figure SI6)

• Radius view (see Figure SI6)

• N berries = number of berries attached to the spherical core particle

• R part = radius of the spherical core particle. Usually R part = Radius view /

sin(angle view) (see Figure SI6).

• R berries = radius of the berries. Since the berries are simulated as ellipses, it is only

an indicator of the size. (see Figure SI6)

• std berries = standard deviation of the size of the berries

• Nb image = number of images in the final simulation

• Max ring = max intensity value of the ring’s pixels defined by the Gaussian function

fx1 before adding more noise with fx2 .

5

Figure SI6: Example of the projected surface of a simulated raspberry particle. The defini-
tions of the parameters: imsize, radius view, angle view, R part and R berries are represented
on the image and the scheme.

To better approximate the experimental data with our simulated images, we also include

a fluorescent ring around the particles, as observed in the micrographs. This is a purely

aesthetic choice, as the ring is not included in the cropped images later used for the analysis,

however it is a desirable feature in experiments, where it helps with centre finding. The ring is

simulated via two Gaussian functions fx1 and fx2, which define the mean value and standard

deviation of the pixel intensity distribution along the ring, respectively. The parameters for

these functions were determined by analyzing a set of experimental images (see Figure SI7).

6

Figure SI7: (A) Mean pixel intensity < I > as a function of radial position r(x, y) obtained
by averaging over 3600 experimental images. The region with r(x, y) roughly between 13
and 16 pixels corresponds to the outer ring, and we extract parameters using the Gaussian

fit function f(r) = a1e
−(r−a2

a3)
2

(black line) to define fx1. (B) Standard deviation of the pixel
intensity σ(I) as a function of radial position r(x, y) obtained from over 3600 images. The
region of the curve corresponding to the ring can also be fitted by a Gaussian function (black
line), whose values are used to define the function fx2 in the simulation. The variance is
normalized by the maximum intensity value for an 8-bit image (255). Colours are used for
visualisation, and indicate distance from the particle centre

From the extracted parameters, we define a ring where each pixel intensity away by a dis-

tance r(x, y) from the particle center is determined by the value of the function fx1(r(x, y))

plus a noise term with zero mean and a standard deviation defined by fx2(r(x, y)). For

each simulated projection of the raspberry particle, a new ring is generated. An example of

a simulated ring can be found in Figure SI8. Here, we also define the variable mask value.

This mask is a hemisphere of radius Radius view, with value 1 in the center, Max ring/255

at Radius view, where 0 < Max ring < 255, and 0 for pixels whose distance to the center is

greater than Radius view. This mask is applied to the projection of the particle surface, to

create a gradient of intensity depending on the position of the pixel from the particle/image

center.

7

Figure SI8: (A) Snippet of the relevant code. (B) Example of a simulated ring using the
functions fx1 and fx2 to define each intensity value. For each simulated image, a new ring
is generated, which is saved in ring intensity. (C) Example of mask value. (D) Values of the
mask corresponding to the blue line in the middle image.

A mesh of equally distributed points is then generated on a spherical surface, with radius

R part, following the method outlined by Markus Deserno1. The positions are saved in

pos iso init while the value associated to each point is saved in Surface im. An example of

the distribution of point positions with N = 100 can be found in Figure SI9.

8

Figure SI9: (A) Snippet of the relevant code. (B) Side view of a 3D plot of a distribution of
N = 100 equidistant points on a spherical surface obtained by an adaptation of a code from1.
(C) Top view of the same distribution. The color indicates the value of the z coordinate.

We then define the locations of the simulated fluorescent berries. Our 3-D surface model

will be created by rotating the spherical mesh and placing berries at the subsequent coor-

dinate on the grid. However, simply generating random numbers for θx, θy, and θz will not

create an uniform distribution of berries on the surface of the sphere. The problem is similar

to the case where the positions are picked by using random uniformly distributed spherical

coordinates, creating a non-uniform distribution of points on the sphere2. Therefore, we

use a while loop to find N angles (θx, θy, θz), where each of them is associated to one prede-

9

fined point pos iso init2 on the surface of the sphere. The definition of pos iso init2 is the

same as in section 3 of the code. We further permute the distribution by randomly shuffling

the matrix storing the angles ang interest 10 times with the in-built MATLAB function

randperm.

Figure SI10: Snippet of the relevant code.

10

The next section of the code generates the berries on the surface of the simulated particle.

For each berry, we rotate our sphere from its initial position by a randomised set of angles

taken from ang interest (defined above). We then add the new berry to the top of our

pixelized surface Surface im before rotating the sphere to its initial orientation (Figure SI11).

Figure SI11: The sphere is rotated from its initial state, and a berry is then added to the
top of the rotated surface. The modified surface is then rotated back to its initial state. This
process is iterated until the desired number of berries are added to the surface of the sphere.

To better mimic the observed experimental micrographs, the simulated berries are ellip-

soidal, and the values of the short and long axes are saved in radiusX and radiusY. The values

are generated using a mean value term R berries, to which a random number from a normal

distribution with mean 0 and standard deviation std berries is added. The orientation of the

ellipse on the sphere is defined by berr ang. The intensity values of each berry, Iso berr value,

is determined by two contributing terms; fx3 to create a gradient of intensity depending on

the pixel distance to the ellipse center, and a randomised value to simulate noise on the pixel

intensity values. The overall intensity profile of the rough sphere Surface im is generated

by recursively adding the values of Iso berr value to the previous Surface im for each new

berry. If the intensity profiles of two berries overlap, for each overlapping pixel we retain the

highest intensity value (see Figure SI12).

11

Figure SI12: (A) Snippet of the relevant code. (B) Top view of the pixelated surface of
a sphere with the position occupied by the computed berry (red). (C) Top view of the
pixelated surface of a sphere with the position occupied by the computed berry which is now
rotated by berr ang = 30◦ (red). (D) 3-D view of the position of different berries (red) on
the sphere (blue).

Having generated the surface of our raspberry particles, we obtain the corresponding 2-D

images by projecting the upper half of the particle surface onto our simulated ”focal” plane.

The pixel intensity values of the focal plane, {x image, y image}, are interpolated from the

pixels of Surface im which lie above the height of the focal plane. This threshold value above

the z-axis is defined by the opening angle angle view. The particle mask and ring are finally

applied to these points (see Figure SI13). To then generate the different rotated images of

the raspberry particle, Surface im is rotated by a set of angles ang rot sim, and the previous

operation is repeated until the desired number of images Nb image are computed.

12

Figure SI13: (A) Snippet of the relevant code. (B) Relative positions of the pixels on
the surface of the simulated sphere (blue crosses), and their respective projection onto the
”focal” plane by interpolation (red circles). (C) Example projection of a simulated raspberry
particle onto the focal plane.

13

3-D rotation tracking: approach, code and applicability

Approach

As described in the main text, the measurement of the true rotation is obtained from the

identification of those angular displacements that maximize the correlation between a first

reference image and a second one corresponding to a prospective rotation of the subsequent

frame. Because the images are 2-D projections from a 3-D spherical surface, before applying

the rotation, the 2-D images need to be processed and projected back onto a sphere, as

shown below in Figure SI14.

Figure SI14: Procedure for 3-D image rotation: We assume that images are projections of
the surface of a sphere onto the focal plane of the microscope (A). The image is cropped to
the central portion of the particle (B). We then project the cropped region of the image onto
a sphere (C), before applying the desired rotation (D). The image of the rotated surface
is projected back onto the focal plane (E), and finally masked (F) before calculating the
correlation.

In order to ensure that the correlation is carried out only on relevant portions of the

images, it is important that an appropriate mask is applied to both the reference and the

rotated images, as exemplified below in Figure SI15.

14

Figure SI15: Example of the application of a mask to an image. (A) Initial (simulated)
image. (B) Initial image after application of the mask. (C) Image A rotated by 35° around
the x-axis. (D): Image C after applying the same mask applied in B, but this time rotated
by 35° around the x-axis. We emphasize that rotating a mask will change the dimensions of
the final, masked image.Therefore when comparing the images, the same rotated mask need
to be applied to both reference and rotated images. The x-axis runs vertically in the plane
of the image.

In particular, the application of a mask to retain only a limited region around the particle

centre is motivated by the fact that the information density of a 3-D surface projected onto

a 2-D plane is a function of position, as illustrated in the scheme in Figure SI16. Specifically,

the length of the arc s = R(θ2 − θ1) and the length of its projection l = R(sin θ2 − sin θ1),

can be calculated as a function of the angles θ1 and θ2. For small angles, the s/l ratio is

close to 1, but it rapidly increases as the position approaches the edge of the hemisphere.

Consequently, as one moves towards the edge of the hemisphere, the projected arc length

l vanishes, implying that the information contained in the 3-D image cannot be properly

mapped in 2-D. Therefore, information on rotations coming from berries at the periphery

of the particle is discarded by cropping the image around the center and applying a mask,

avoiding the contribution of berries ”disappearing” from the field of view. Effectively, for

15

our analysis, we limit our range of angles −50◦ < θ < 50◦.

Figure SI16: Left: Scheme of the projection of an arc onto the diameter of a circle. Right:
The ratio s/l as a function of θ (in degrees) with a fixed ∆θ = 5◦

180◦
π.

16

Figure SI17: Our angle registration method is applied to images which are a restricted
projection of the particle surface onto a 2-D plane, and therefore it is limited to a smaller
range of rotations in the x- and y- axes. To probe the valid angles which can be detected
by our method, we test the approach on 5000 simulated images. Details of the particle
simulation can be found in the Simulation Code section. We test the accuracy of our method
for rotations in 1-D by rotating our particle about the x-axis with θsimx in the range [−110◦

110◦], in the presence of rotations about the y-axis with θsimy between [−10◦ 10◦]. No rotations
about the z-axis were applied. (A) Computed angle θcomp

x with our 3D registration method
relative to the ground-truth θsimx input into the simulation. Angles in the range [−130◦ 130◦]
in increments of 1◦ were screened (beyond the initial range of simulated, true values), and
accompanying rotations about the y-axis in the range [−16◦ 16◦] with increments of 1◦ for
θcomp
y were screened (beyond the initial range of simulated, true values). (B) Evolution of the
standard deviation of the error in computed angles about the x-axis; dθx = θcomp

x − θsimx . For
smaller rotations, the standard deviation of the error remains relatively stable, however, it
begins to deviate for |θsimx | ≥ 30◦. (C) Evolution of the normalised sum of the Boolean mask
for different rotation angles θx about the x-axis. As |θx| increases, the applicable mask size
and thus the sum of the boolean mask decreases. Until |θcomx | = 30◦, approximately three
quarters of the information contained in the original mask (with no rotation) is retained.
From A., it initially appears that θx,comp and θx,sim are in good agreement for |θx, sim| < 90◦.
However, from B., we note that σ(dθx) already deviates for |θx,sim| > 50◦ with a significant
divergence for angles greater than 85◦. From this analysis, we conclude that we can recover
rotations about the x- and y- axes with relative confidence up to angles of 30◦. Beyond this
range, for the explored mask sizes, the effect of the mask size or limited surface information
from the obtained images may lead to unreliable results.

Code

Here, we describe the key elements of the code used to measure angular displacements.

The section “images folder’s path” allows the user to define the path to the folder where

the images are stored. This folder should only contain the images and no other documents.

The next section “Definition of the parameters” allows the user to define most of the

17

parameters for the code.

• Image number = Number of images to analyze

• image size = Size of the resized images (see Figure SI18)

• radius = window radius applied to the initial image to crop (see Figure SI18)

• R part= Radius of the particle in the size init scale (see Figure SI18)

• mask r = proportion of the image with mask

• gfilt = size of the Gaussian filter from the MATLAB function imgaussfilt

• contrastp=contrast parameter from the MATLAB function imadjust;

• angle scanx = angles that will be scanned for the rotation about the x-axis. The x-axis

is defined as a vector of size (1,:).

• angle scany = angles that will be scanned for the rotation about the y-axis. The y-axis

is defined as a vector of size (1,:).

• angle scanz = angles that will be scanned for the rotation about the z-axis. The z-axis

is defined as a vector of size (1,:).

Once the parameters are defined, the code resizes the images to a new size image size from

a cropped zone twice the size of radius of the original image A, while applying a Gaussian

filter, adjusting the contrast and applying the mask. In the first image that appears, the

user verifies that the chosen parameters are appropriate.

18

Figure SI18: Schematic of the different parameters used in our code.

In the next section “Initialize all wished rotations”, the code will first apply the image

transformations previously defined by the user to all images and store the resulting ind th im-

ages in image B(:,:,ind), where ind is the frame number. After defining the rotation matrices

rotx, roty, rotz, i.e. the rotations around the axis x, y and z, we store the positions of each

pixel relative to the origin corresponding to the center of the image in (x pos init,y pos init).

We then define our initial mask image interesting pixel mask but also the position z pos init,

whose value is given by
√

R2 − x2 − y2 if x2 + y2 < R2 and z = 0 everywhere else. To

accelerate the code, the position matrices are vectorised, so the rotation can be later directly

applied to all the vectors. The positions are now stored in pos init. After initializing the dif-

ferent matrices, we compute, through different ”for” loops, all possible rotation combinations

of the values in angle scanx, angle scany and angle scanz. For each iteration ind progress, we

compute the new position pos rot of the pixels after the rotation, then reshape the position

in the same matrix size as the image (x rot and y rot) and save the value for each instance

in x rot1(:,:,ind progress) and y rot1(:,:,ind progress). We also compute the shape of the

associated mask using x rot and y rot, and store it in mask(:,:,ind progress). Finally, we

store the angles scanned in ang progress(:,:,ind progress).

19

The ordering of the rotation matrices is important when applying a transformation

to the position vector. As we call the MATLAB in-built interp2 function to interpolate

an image at t1 and compare it to the ”true” image at t0, the rotations are defined as

pos rot = rotz(θz)roty(θy)rotx(θx)pos init. In the opposite case, if an interpolated im-

age at t0 is compared to the ”true” image at t1, the rotations are defined as pos rot =

rotx(−θx)roty(−θy)rotz(−θz)pos init and the resulting rotation angles are {−θx,−θy,−θz}

(see Figure SI19).

20

Figure SI19: Original image A and interpolated images A1, A2, A3 and A4 after application
of the rotation matrices R1, R2, R3 and R4, as defined at the bottom of the figure, respec-
tively. If an image at t0 is compared to the next at t1 (i.e. rotating image A to match image
B), it is necessary to use the rotation matrix R = RxRyRz, and note that the computed
angles are opposite to the ones used in the simulation case. Conversely, if image B is rotated
to match image A, then the relevant rotation matrix is R = RzRyRx, and the computed
rotation angles correspond to the the simulated ones. The image differences in the bottom
row of each panel highlight the effect of the order of the application of the the rotation
matrices and the sign of the rotation angles.

The next section of code defines which image indices to compare through imstep. It

is important that the images separated by imstep are sufficiently distinguishable for the

correlation-based analysis. A figure will pop up so the user can visually inspect the two

separate images, and thus evaluate if the value of imstep is appropriate or needs to be

21

refined. Additionally, the code can be initially run on a few images (around 50) and the

user can examine the distribution of computed angles and assess if a bigger or smaller step

between images indices (imstep) is necessary or if the angle limit needs to be adjusted.

The last section of the code computes all the theoretical, rotated images correspond-

ing to the previously defined rotation angles, using the in-built MATLAB function interp2.

The generated, rotated images with coordinates (x rot1, y rot1) are obtained from the orig-

inal data image B(:,:,ind image+imstep) with coordinates (x pos init, y pos init), and the

data is stored in new image. For each theoretical, rotated image, the mask corresponding

to the rotation is applied to the rotated image and the reference image image initial, and

the correlation between the two masked images is then determined using the in-built MAT-

LAB function corr2, and stored in correlation res(ind progress,ind image). The MATLAB

function corr2 applied to the matrix A and B, computes the following quantity:

corr2(A,B) =

∑
m

∑
n

(Amn − Ā)(Bmn − B̄)√(∑
m

∑
n

(Amn − Ā)2
)(∑

m

∑
n

(Bmn − B̄)2
)

with Ā the mean value of A and B̄ the mean value of B.

Finally, the maximum correlation for each image ind image is found, and the correspond-

ing index ind max is used to extract the corresponding angles from ang progress. These

angles are saved in res ang. The first row of this matrix corresponds to the angles of the

rotation about the axis x, the second corresponds to the angles of the rotation about the axis

y, while the last row corresponds to the angles of rotation around the axis z. Each column

corresponds to the estimated angles between the ith image and the (i+ imstep)th one.

Method applicability and sensitivity

As alluded to above and in the main text, there are several parameters, which can be affect

the applicability and the precision of our method, at the cost of computational speed. To

22

evaluate the effect of the different parameters, we applied our image registration method to

analyse 500 simulated images of a rotating raspberry particle.

Effect of angle step and image size.

In Figure SI20-A, we evaluate the true rotations in increments between 0.5° and 4° (ang step

= 0.5°, 1°, 2°, 3°, 4°) for a raspberry particle with an image size = 50 pixels (image size = 50),

and in Figure SI20-B, the effect of changing image size between 15 and 75 pixels (image size

= 15, 20, 30, 50, 75) was evaluated for a fixed angular increment of 2° (ang step = 2°). In

all cases, the cropped image corresponds to 75% of the particle size, which is rescaled to an

image size of 50 x 50 pixels and a mask radius of R mask = 24 pixels image was applied for

the analysis.

23

Figure SI20: Evolution of the difference dθ = θcomp − θsim between the angles computed
with our method θcomp and the angles used in the simulation θsim as a function of θsim for
different discretization steps ang step (A) or for different image sizes image size ang step=
2° (B).

We find that increasing the resolution of the discretized space, controlled by ang step,

will accordingly improve the accuracy of the computed angles (see Figure SI20-A). When

evaluating the analysis of the simulated data by adjusting ang step from 2° to 4°, the error

dθ between the retrieved angles and the true angles of the simulation is confined between

-ang step/2 and ang step/2 for the rotations around the x- and y-axis, while the distribution

of the error in the detected angular displacements around the z-axis is broader. This dis-

crepancy can potentially be attributed to the properties of the discretization of the particle

in an image. For a simulated image of 50 pixels, rotations around the x- and y-axis typically

24

result in features translating by more than 1 pixel, if the angular displacement is greater than

2° (Figure SI21). For in-plane rotations (about the z-axis), similar results can be observed.

However, in the latter case, the maximum feature displacements occurs at the periphery of

the image, whereas for rotations around the x- and y-axis, the largest pixel changes from

rotations occur at the centre of the image. As the particle centre possesses the highest in-

formation density, this might cause the observed lower precision of angle registration about

the z-axis compared to the x- and y-axes (Figure SI22).

Figure SI21: Displacement value map d̄ =
√

(xn − x)2 + (yn − y)2 and [xn yn zn]’ = Rθx

[x y
√

R2
part − x2 − y2]’ for different rotation angles θx about the x-axis for a cropped 50

pixel particle image. The histograms in the bottom row show the distribution of d̄ in the
corresponding images above. The maximum, absolute displacements for rotations out-of-
plane (about the x- and y-axes) occur at the centre of the image. As seen from the histograms,
a significant number of points will experience a displacement d̄ greater than 1 pixel when the
rotation angle is greater or equal to 2°. Therefore, for an image of 50 pixels, an out-of-plane
rotation of 2° can be detected by comparing the pixel shifts between two subsequent images
before and after rotation.

25

Figure SI22: Displacement value map d̄ =
√

(xn − x)2 + (yn − y)2 with [xn yn zn]’ = Rθx [x

y
√

R2
part − x2 − y2]’ for different rotation angles θz about the z-axis for a cropped 50 pixel

particle image. The histograms in the bottom row show the distribution of d̄ in the corre-
sponding images above. For in-plane rotations in-plane (about the z-axis), the maximum
absolute displacements occur at the borders of the image. As seen from the histograms, a
significant number of points will experience a displacement d̄ greater than 1 pixel when the
rotation angle is greater or equal to 3°. Therefore, the threshold for detection of in-plane
rotation is greater than that for out-of-plane rotations, as the central portion of the image
with the highest information density also displays lower displacements for in-plane rotations.

Returning to the analysis performed with ang step = 0.5° and ang step = 1°, the error

distribution for the rotations around the z-axis does not degrade compared to that observed

for larger ang step, indicating an improvement in angle registration with decreasing ang step.

In contrast, with decreasing ang step, the recorded angles around the x- and y-axis shows a

tendency to underestimate the true angles, and this effect is more pronounced as the abso-

lute value of the real angular displacements increases. However, there is a trade-off between

the size of the discretisation step ang step used and the computational time required for our

method. For example, determining the angular displacements between 500 images, rang-

ing between [-12° +12°], using ang step = 4° for image size = 50 takes 14s, which increases

to approximately 3 min for ang step = 2°, and 26 min for an angle step of 1° (see Figure SI23).

An alternative approach to reduce the computational time, without increasing the in-

26

crements of ang step used, is to reduce the size of the images (image size) evaluated in the

correlation process. Keeping ang step fixed at 2°, approximately 11 min is required to pro-

cess images with image size = 100, which is reduced to around 6 min for image size = 75,

3 min for image size = 50, and 2 min for image size = 30 (see Figure SI23). Nevertheless,

decreasing the computational time by reducing the image size will also impact the precision

of our method. From our simulated data, we find that with ang step = 2°, the precision of

the registered angles remains stable until an image size of 50 px is used. After this point,

smaller images tends to decrease the precision of the rotation angles around the z-axis while

it slightly biases the estimated angles around the around the x- and y-axis to be lower than

the true values. This effect is increased as the image size is further reduced (see Fig SI

SI20-B). Please note that some of the computation time does not simply scale with the size

of matrices because of fixed times required to call functions, etc. (see Figure SI24)

Figure SI23: Time required to run the code on a set of 500 images for different image size
and different ang step with ang lim = 16. As expected, increasing the angle increment size
and thus reducing the number of angles analysed reduces the computational time required,
while increasing the image size increases the computation time.

27

Figure SI24: Ratio between the actual and the expected computational time required to
compute the angles from a set of 500 images for different image size and different ang step
with ang lim = 16. The expected time is calculated with respect to the time required for
the reference case image size = 75 and ang step = 2, which is multiplied by image size2

752
(area)

and the number of angles to compute, divided by the number of angles to compute when
ang step = 2. For ang step = 1, the number of angles to compute is 333, while for ang step
= 2, the number is 173 and 93 for ang step = 4. This ratio depends only weakly on ang step,
while it varies significantly if image size changes. Although smaller images are processed
faster, various computational steps are image-size independent, and therefore the decrease
in computation time does not scale with image size2 .

Effect of particle radius and center location

The predicted particle radius and the accurate identification of the particle centre are further

parameters, which are critical to the precision of our method, even if they do not affect the

computational time. We demonstrate the effect of errors in their definition in Figure SI25,

by adjusting the particle radius (A) or shifting the image centre (B) from their true values,

while keeping the parameters image size and ang step fixed at 50 pixels and 2°, respectively.

An incorrect estimation of the particle radius will not noticeably affect the precision of the

angles extracted for rotations around the z-axis. However, errors in the input particle radius

will bias the results of both the x- and y-axis. Underestimating the particle radius leads to

an overestimation of the angular displacement, which becomes more pronounced as the true

rotations become larger. In contrast, overestimating the particle radius leads to underesti-

mated rotation angles. In both cases, there appears to be a linear increase of the errors in

28

the predicted angular displacements with the error in the estimated particle radius. We also

note that underestimating the the particle radius seems to have a more drastic effect on the

error of angle registration compared to its overestimation (see Figure SI25 - A).

Errors in the localisation of the particle centre can also have a significant impact on the

accuracy of the estimated angles. When the tracked centre of I1(x, y) is shifted along the

x-axis compared to the ground truth, whereas the reference image I(x,y) is perfectly centred,

the errors in the estimated angular displacements are predominantly found around the y-axis

with a systematic increase in the error as the accuracy of tracking x decreases (see Figure

SI25 - B). In contrast, the distribution of errors in the recorded angles around the x- and

z-axes gradually increases, but the extracted rotations are always centred around the true,

simulated value. Similar trends are observed if the error in the particle centre estimated is

instead along the y- or xy-axis. In the case that all images (I1(x, y), I(x,y)) are tracked with

the same localisation error dx along the x-axis, the width of the distribution of errors in θx

and θz increases, however, there is no shift in the measured value for θy (see Figure SI26).

29

Figure SI25: Evolution of the difference dθ = θcomp−θsim between the angles computed with
our method θcomp and the angles used in the simulation θsim as a function of θsim for different
mismatch values of the particle radius Rpart compared to its theoretical value Rpart,theo with

dRpart =
Rpart−Rpart,theo

Rpart,theo
(A) or for shift values dx of the particle center with respect to the

image’s center along the x-axis for one image, while, in the second image, the particle is
centered (B).

30

Figure SI26: Evolution of dθ = θcomp − θsim between the angles computed with our method
θcomp and the angles used in the simulation θsim as a function of θsim for different scenarios
where errors are introduced in particle centre finding. (A) Translations dy of the particle
centre along the y-axis for one image, where the second image is properly centred. (B)
Translations dxy =

√
dx2 + dy2 with dx = dy, of the particle center along the xy-axis for

one image, where the second image is properly centred. (C) Translations dx of the particle
centre along the x-axis for both images compared for rotation analysis

31

Effect of the coverage of fluorescent berries

Finally, we show that the surface density of fluorescent features (berries) on the particle

surface also affects accuracy of the method. Essentially, the surface texture need to have

sufficient distinguishable features to track the rotation and surfaces that are too uniform, i.e.

with too few and too many berries, make the tracking difficult. However, as shown in Figure

SI27, we observe that our method works for a broad range of berry coverages. As a practical

note, thresholding and binarizing the images reduces the performance of the algorithm.

32

Figure SI27: Evolution of dθ = θcomp − θsim between the estimated angles θcomp with our
method and the angles used in the simulation θsim between two images, as a function of the
value of the simulation angle θsim, for different simulated raspberry particles and contrast.
(A) Effect of increasing the berry coverage on the particles. (B) Same computations and in
(A) but with binarized images.

33

Different approaches to track rotation

Figure SI28: Example of automated tracking and linking of berries between subsequent im-
ages. The positions of the berries are found with the function imfindcircles from MATLAB.
An example of the tracking is shown with the red circles on both images Image 1 and Image
2. The berries are matched then with the help of the code trackmem from Maria Kilfoil (Feb.
05) which is an MATLAB implementation of the particle tracking algorithms developed by
Crocker and Grier3. The matched berries between Image 1 and Image 2 are linked by the
dotted green lines.

34

Figure SI29: Example of manual tracking and matching of the berries. (A) Screenshot of
the window used in MATLAB to click on the particles’ positions. The positions are recorded
with the function ginput. Here, the berries between subsequent images are manually matched
to eliminate potential tracking errors by automated algorithms. (B) Images of the particle
in (A) with the berries identified by the colored dots.

Figure SI30: Example of erroneous automated berries tracking and linking. The close
proximity of two berries prevents their accurate localisation in the first image, leading to a
mismatch during the linking step with the subsequent frame.

35

Figure SI31: Computed rotation angles around the x-axis θx,comp, the y-axis θy,comp and the
z-axis θz,comp compared to the corresponding angles from the simulation θsim for our 3-D
rotation registration method with an angle limit of ±20◦ and angle step of 2◦ for the case
where the particle is a Janus particle (A) or a particle with our SMI logo on its surface (B).
An image of the simulated particle used for the studies can be found at the left of the plots in
each case. When generating the simulated data, the sphere is rotated in all 3 directions each
time. We note that for the case in (B) where no rotational symmetry of the particle texture
is present, our approach correctly tracks all three rotations, while in (A), where the surface of
the Janus particle has an optical symmetry, the method’s performance is significantly lower.

36

Flow of particles in a capillary channel

Figure SI32: Mean translation velocity vp of the raspberries particles measured for different
injection rates in the capillary channel. The error bars are the standard deviations of vp for
each injection rate. The number of particles used to obtain these data is reported in Figure
SI33.

Figure SI33: Number of particles (nb) used to compute the mean and standard deviation of
translation velocity of the particles (vp), as well as the number of particles used to determine
their rotational motion, for the different injection rates.

37

Figure SI34: Particle flown in a capillary channel (black arrows indicate direction of flow).
A: Particles in close proximity to the capillary wall (top edge of the respective images) B:
Particles flowing through the centre of the capillary, with a gradient of particle density.

Freely-rotating particles

As discussed in the main text, we can compare the measured rotational diffusion coefficients

for freely moving particles next to a glass substrate.

We treat all the angular displacements along the three axes as from the same distribution,

38

and fit the MSAD equation for one dimension MSAD = 2DRτ . Fitting up to τ = 1.2 and

averaging over the 3 particles shown in Figures 4 A-D, we obtain a rotational diffusion

coefficient corresponding of D̂R = 0.0141 rad2s−1, which corresponds to an average particle

radius R̂p = 2.28 µm, assuming Stokes-Einstein’s relation DR = kBT/(8πηR
3), with η being

the fluid viscosity. This is good agreement with the measured particle radius of 2 µm

obtained from electron micrographs. In contrast, by extracting an effective particle size from

translational diffusivity and using the Stokes-Einstein’s relation in bulk DT = kBT/(6πηR),

we initially obtain R̂p = 5.11 µm. However, assuming that the true hydrodynamic radius of

the particles’ is the measured value of 2 µm, we apply Faxen’s correction factor for a wall

separation h = 0.1R and find that the measured value is 92.3% of the expected value for

this distance.

We observe that both the in-plane (z) and out-of-plane (average x-y rotation) show a

linear dependence of the MSAD with lag time, as expecting for objects undergoing rotational

diffusion. The fact that the slope (in a log-log plot) of the out-of-plane rotation is somewhat

smaller indicates a greater degree of rotational drag along the z-axis.

As discussed in the main text, some drift is present at the fluid-fluid interface, as visible

in the MSD data shown in in FigureSI35.

39

Figure SI35: Computed mean squared displacements of the 6 particles in Figure 5 of the
main text, for increasing lag times τ . The presence of a ballistic regime at long lag times at
the fluid interface (blue curves) a signature of convective drift, which is typically observed
at fluid-fluid interfaces.

40

Figure SI36: Computed MSAD for the Brownian (passively diffusing) particles at the liquid-
liquid (top row) and liquid-solid (bottom row) interface. Columns indicate the MSAD for
the rotations θx, θy, and θz respectively. The dashed lines show the MSADs for a systematic
over(under)estimation of the computed angles by 1 or 2 degrees. To compute the +1 degree
line (resp. +2), to each measured angle, +1 (resp. +2) was added if the value was positive
or null and -1 (resp. -2) was added if the value was negative. To compute the -1 degree line
(resp. -2), for each measured angle θ, max(θ-1,0) (resp. max(θ-2,0)) is taken for positive
values while for negative values min(θ+1,0) (resp. min(θ+2,0)) is taken and if θ = 0, the
taken value is also 0. This is to show the worst case scenarios where the estimated angles
have a constant bias of 1◦ or 2◦ error.

Different considerations on the calculation of the MASD

Changing the order of rotations may affect the computed angular displacements due to

discretization. In order to evaluate this effect, below we show the difference in the computed

angles around the x-, y- and z-axis for different rotation orders (see Figure SI37). In this

41

case, the difference in angles between the two rotation orders is typically within 2◦.

Figure SI37: Absolute difference between the computed rotation angles retrieve using a
rotation matrix Rzyx=RzRyRx compared to the ones obtained regarding the rotation matrix
Ryxz=RyRxRz for different simulated angles around the 3 axis. The plot on the left shows
the computed angles around the x-axis, the one in the center around the y-axis while the
one on the left shows the results obtained around the z-axis. .

Moreover, because angular displacements are bound to 2π in all directions, there is a

difference between the true MASD and a cumulative MASD. In our computations, we always

report the cumulative MASD, where we keep adding angles over time, but in general

R(θz(t1)+θz(t2), θy(t1)+θy(t2), θx(t1)+θx(t2)) ̸= R(θz(t2), θy(t2), θx(t2)).R(θz(t1), θy(t1), θx(t1))

However, for small angular displacements, the two types of MASD are very close (see

Figure SI38)

42

Figure SI38: Computed cumulative MSAD (MSAD1) and true MSAD (MSAD2) as a func-
tion of time lag between images (di) for a set of 40000 angles chosen randomly between ±12◦.
The cumulative MSAD is computed by always adding the angles while the actual MASD is
computed by calculating the different rotation matrix associated to each rotation where the
angular displacements are bound to [−180◦; 180◦].

Moreover, in all the MSAD data shown in the main text, the rotations around one axis

are typically greater than the ones around the other two, therefore the total rotation is

practically independent of the rotation order (see Figure SI39)

43

Figure SI39: Computed cumulative MSAD obtained with different rotation orders (xyz is
first a rotation around the z-axis, then around the y-axis and finally the x-axis) to compute
the rotation angles around the x-axis (first column), the y-axis (second column) or the z-
axis (third column) for an experimental particle pinned at the water/oil interface (A) or an
experimental particle freely moving in water above a glass slide (B). As it can be seen the
order of rotations does not influence the calculated MASD, especially at short times.

Alternative methods for 2-D rotation tracking

As discussed in the main text, the fact that the displacements and the rotation of particles

adsorbed at the interface are effectively confined in 2-D within the interface plane, allows us

to compare our 3-D method with 2-D alternatives.

In Figure SI40, we illustrate the workflow for a 2-D rotation/registration method. First

both images are cropped and resized to discard the data close to the particles’ edge. Then,

image 1 is rotated by an angle θ, before application of a mask (disk-shaped). The masked,

rotated image is then compared to the second image i, to which the same mask was previously

applied. Unlike the previous examples studying the 3-D rotation case, it is not necessary

to adjust the mask shape based on the rotation angles studied. The registered angle is

44

determined as the rotation angle which provides the best match (maximising the correlation

coefficient) between the masked rotated image and the second image.

Figure SI40: Schematic of the image rotation registration method, applied to particles
rotating in 2-D only at the interface.

In Figure SI41 we illustrate the work flow for the rotation/registration method based on

the FFT of particle images. This method does not require a centered image of the particle,

thus removing a potential source of error during tracking, however it only applies for a single

particle in the field of view. The micrograph is first resized and added to a larger background

image before computation of its 2-D FFT (using the in-built MATLAB function fft2), to

increase detail in the resulting FFT image. The absolute value of this image is squared, then

the image scale value is then logged before application of the MATLAB function fftshift.

The image is then cropped to retain the useful information. The same processing is applied

to the second image. Finally, the two FFT images are compared and rotation is measured

using the method described in Figure SI40.

45

Figure SI41: Schematic of the rotation registration method based on the FFT of images
with the experimental micrograph of the particle placed randomly in a bigger black frame.

46

Active particles

Figure SI42: Computed MSAD for the Janus raspberry particles (with Pt cap) in the
absence of 3 v/v% H2O2 fuel (Brownian motion, top row) or in the presence of 3 v/v% H2O2

(active motion, bottom row). Columns indicate the MSAD for the rotations θx, θy, and
θz respectively. The dashed lines show the MSADs for a systematic over(under)estimation
of the computed angles by 1 or 2 degrees. To compute the +1 degree line (resp. +2), to
each measured angle, +1 (resp. +2) was added if the value was positive or null and -1
(resp. -2) was added if the value was negative. To compute the -1 degree line (resp. -2), for
each measured angle θ, max(θ-1,0) (resp. max(θ-2,0)) is taken for positive values while for
negative values min(θ+1,0) (resp. min(θ+2,0)) is taken and if θ = 0, the taken value is also
0. This is to show the worst case scenarios where the estimated angles have a constant bias
of 1◦ or 2◦ error.

Here, we evaluate the error associated with tracking θz of active particles from their dis-

placements, as it has been previously performed in the literature, e.g.4,5. Assuming that the

47

orientation of an active particle coincides with its swimming direction, angular displacements

can thus be derived from changes in the propulsion direction. However, this indirect method

suffers from two main limitations: one associated to localisation errors during particle track-

ing and the other one deriving from the fact that, especially at short times, directed ballistic

motion overlaps with random displacements from Brownian diffusion, such that displacement

and orientation are actually decoupled. We investigate this errors by considering two equal

displacements of a particle (black dots with fixed distance d̄) from its starting point, with

a true angle θtheo between the subsequent displacements. We then introduce noise in the

centre finding, defined by the green circle radius dnoise and define the error in centre finding

by randomly sampling a coordinate (blue dots) located within the circle radius dnoise. From

the blue dots, we now obtain a new measured angle θnoise which accounts for the noise terms

introduced by localisation error and the random displacements (see Figure SI43 - A). By

computing 1000000 errors cases, the 0.05 quantile θq(0.05) and the 0.95 quantile θq(0.95) of the

angle distribution θnoise can be extracted (see Figure SI43 - B). The ’width’ of the distribu-

tion d15
◦

θq
= θq(0.95)-θq(0.05), which can be seen as the error one could obtain on the computed

angle is decreasing as the position error noise dnoise get smaller compared to the theoretical

distance between two points d̄. In other words, as one could imagine, the measured angle is

less prone to error if the error on the position is getting smaller compared to the travelled

distance. For instance, with our simulation, one could expect an accuracy on the measured

angle of less than one degree only if the distance between two points is more than 100 times

the precision on the position localisation (see Figure SI43 - C). Moreover these results are

almost independent of the theoretical angle of displacement θtheo (see Figure SI43 - D).

48

Figure SI43: (A) Scheme of our simulation to determine the influence of the position accu-
racy on the measured displacement angle. (B) Distribution of measured displacement angles
θnoise obtained by simulating 1000000 cases with θtheo = 15◦ and the taking points with po-
sitions randomly picked with a maximum distance dnoise = 0.1 d̄ of the theoretical position.
θq(0.05) (resp. θq(0.95) is the 0.05 (resp. 0.95) quantile of the distribution. (C) Evolution of the
’width’ of the distribution d15

◦

θq
= θq(0.95)-θq(0.05) with θtheo = 15◦ relative to the ratio between

the theoretical displacement between two points d̄ and the positional noise limit dnoise. (D)
Evolution of the difference between the width of the distributions for the angle θtheo = i◦

(diθq) and the one for the angle θtheo = 30◦ (d30
◦

θq
), normalised by the width of the distribution

for the angle θtheo = 30◦, for different ratios of d̄ to dnoise.

Suppelmentary Movies

SM1: Recorded images of particles flowing in a glass capillary with an injection rate of 60

µL/hr. The white scale bar represents 8 µm. The right part shows a magnified view of each

tracked particle in a comoving reference frame.

SM2: Recorded images of a particle freely diffusing in water close to a glass substrate.

The scale bar represents 8µm. The right part shows a close-up of the tracked particle in a

49

comoving reference frame.

SM3: Recorded images of a particle absorbed at a hexadecane - water interface. The scale

bar represents 8µm.The right part shows a close-up of the tracked particle in a comoving

reference frame.

SM4: Recorded images of a Janus particle with a 5 nm platinium cap freely diffusing

in water close to a glass substrate. The scale bar represents 8µm. The right part shows a

close-up of the tracked particle in a comoving reference frame.

SM5: Recorded images of Janus particles with a 5 nm platinum cap swimming in an

3 v/v% H2O2 aqueous solution. The scale bar represents 8µm. The right part shows a

magnified view of each tracked particle in a comoving reference frame.

References

(1) Deserno, M. How to generate equidistributed points on the surface of a sphere. 2004;

https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf.

(2) Weisstein, E. W. Sphere Point Picking. From MathWorld–A Wolfram Web Resource.

https://mathworld.wolfram.com/SpherePointPicking.html.

(3) Crocker, J. C.; Grier, D. G. Methods of Digital Video Microscopy for Colloidal Studies.

Journal of Colloid and Interface Science 1996, 179, 298–310.

(4) Mestre, R.; Palacios, L. S.; Miguel-López, A.; Arqué, X.; Pagonabarraga, I.; Sánchez, S.

Extraction of the propulsive speed of catalytic nano- and micro-motors under different

motion dynamics. 2020; https://arxiv.org/abs/2007.15316.

(5) Dietrich, K.; Volpe, G.; Sulaiman, M. N.; Renggli, D.; Buttinoni, I.; Isa, L. Active

Atoms and Interstitials in Two-Dimensional Colloidal Crystals. Phys. Rev. Lett. 2018,

120, 268004.

50

https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf
https://mathworld.wolfram.com/SpherePointPicking.html
https://arxiv.org/abs/2007.15316

