Supporting information

Tuning of Scleroglucan Adsorption on Carbonate Surfaces via Grafting Alkyl Side Chains of Different Lengths: A Theoretical and Experimental Study

Abbas Shirdast¹, Behnam Davoodi¹, Jamal Aalaie², Pengfei Zhang³ and Alireza Sharif^{1*}

- Department of Polymer Reaction Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, 14155/143, Tehran, Iran,
 - Chemicals, Polymers & Petrochemicals Technology Development Division, Research Institute of Petroleum Industry (RIPI), 14665-137, Tehran, Iran
- 3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for

Advanced Low-Dimension Materials, College of Material Science and

Engineering, Donghua University, Shanghai 201620, China

*Corresponding Author's E-mail: <u>asharif@modares.ac.ir</u>

Fig S1. Calibration curve for UV-vis spectrophotometric determination of Sclg concentration in aqueous solution.

Table S1. The Hansen solubility parameters for the components in the solutions [1]

Component	$\delta_D (\mathrm{MPa})^{1/2}$	$\delta_{P} (\mathrm{MPa})^{1/2}$	$\delta_{H(\mathrm{MPa})^{1/2}}$
Water	15.0	16.0	42.3
Sclg main chain segment	18.2	12.4	10.8
Side chain segment	16.0	0.8	2.8
Carbonate solid surface	19.4	7.5	6.7
NaCl salt (Na ⁺ , Cl ⁻)	17.3	10.0	-

Fig S2. The experimental surface excess of Sclg and modified Sclgs, in terms of number of polymer chains per unit area (m⁻²), at different initial polymer concentrations in brine solutions on the carbonate surface (0.04% w/v) at (a) 25 °C and (b) 90 °C.

Fig S3. The volume fraction profiles of main chain segments in loop (solid lines) and tail (dashed lines) conformations, with length t = 1000, for Hex-Sclg (red), Dec-Sclg (blue)

and St-Sclg (black) in aqueous solutions (a, b) and brine solutions (c, d), at 25 $^{\circ}$ C (a, c) and 90 $^{\circ}$ C (b, d). All the parameters for calculations are given in Tables 1 and 2.

Fig S4. The volume fraction profiles of main chain segments in loop (solid lines) and tail (dashed lines) conformations, with length t = 2000, for Hex-Sclg (red), Dec-Sclg (blue)

and St-Sclg (black) in aqueous solutions (a, b) and brine solutions (c, d), at 25 $^{\circ}$ C (a, c) and 90 $^{\circ}$ C (b, d). All the parameters for calculations are given in Tables 1 and 2.

Fig S5. The volume fraction profiles of main chain segments in loop (solid lines) and tail (dashed lines) conformations, with length t = 3000, for Hex-Sclg (red), Dec-Sclg (blue) and St-Sclg (black) in aqueous solutions (a, b) and brine solutions (c, d), at 25 °C (a, c) and 90 °C (b, d). All the parameters for calculations are given in Tables 1 and 2.

Fig S6. The volume fraction profiles of main chain segments in loop (solid lines) and tail (dashed lines) conformations, with length t = 4000, for Hex-Sclg (red), Dec-Sclg (blue) and St-Sclg (black) in aqueous solutions (a, b) and brine solutions (c, d), at 25 °C (a, c) and 90 °C (b, d). All the parameters for calculations are given in Tables 1 and 2.

Reference

(1) C. M. Hansen, Hansen Solubility Parameters A User's Handbook; CRC Press, 2007.