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We consider a spherical cap model illustrated in figure S1. A liquid droplet is placed inside a
sphere of radius R. Alternatively one can think of a droplet placed on a concave membrane
that is shaped as a spherical cap with radius R. The liquid-vapor interface is modeled as a
spherical cap with radius r. The contact angle θ between the liquid-vapor and liquid-membrane
interfaces is given by the Young’s equation

cos θ =
σvm − σlm

σ
(1)

where σ, σlm and σvm denote the surface tensions of the liquid-vapor, liquid-membrane and
vapor-membrane interfaces. On the other hand, the geometry of the system illustrated in
figure S1 implies that

θ = α + β (2)

and
R sinα = r sin β (3)
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Figure S1: Illustration of the spherical cap model. The liquid-vapor interface is a spherical cap
with radius r. The membrane has the shape of a spherical cap with radius R. The contact
angle θ = α + β is given by the Young’s equation (1), and R sinα = r sin β.
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The volume of the droplet can be written as

V =
4

3
πR3g(α) +

4

3
πr3g(β) (4)

where

g(α) =
1

4
(2 + cosα) (1− cosα)2 (5)

A spherical droplet with the same volume V has radius r0 given by

V =
4

3
πr30 (6)

Therefore, using equations (2) and (3), we obtain(r0
R

)3
= g(α) + g(θ − α)

sin3(α)

sin3(θ − α)
(7)

Equation (7) determines the angle α for given contact angle θ and dimensionless curvature r0/R
of the surface.

The total interfacial energy of the system illustrated in figure S1 is

U = Alvσ + Alm (σlm − σvm) = σ (Alv − Alm cos θ) (8)

where Alm and Alv denote the areas of the liquid-membrane and liquid-vapor interfaces, respec-
tively, and the second equality in (8) follows from the Young’s equation. Within the framework
of the spherical cap model, these areas are given by

Alm = 2πR2 (1− cosα) (9)

and

Alv = 2πr2 (1− cos β) = 2πR2 (1− cos(θ − α))
sin2(α)

sin2(θ − α)
(10)

where the second equality in (10) follows from equations (2) and (3). It is convenient to use
dimensionless areas of the two interfaces

Alm

4πr20
=

1

2

(
R

r0

)2

(1− cosα) (11)

and
Alv

4πr20
=

1

2

(
R

r0

)2

(1− cos(θ − α))
sin2(α)

sin2(θ − α)
(12)

where 4πr20 is the area of a spherical droplet with volume V = 4
3
πr30. Now the total interfacial

energy of the droplet, as given by equation (8), can be now written as

U

4πr20σ
=

1

2

(
R

r0

)2

(1− cos(θ − α))
sin2(α)

sin2(θ − α)
− 1

2

(
R

r0

)2

(1− cosα) cos θ (13)

where 4πr20σ is the interfacial energy of a free, spherical droplet of radius r0. In the limiting
case of a flat substrate, i.e. R→∞ and α→ 0 with Rα = r sin θ, we obtain

U

4πr20σ
= (g(θ))1/3 (14)
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Thus the difference in the interfacial energy of the droplet placed on the curved and planar
membrane, ∆U = U(θ, r0/R)− U(θ, 0), is given by

∆U

4πr20σ
=

1

2

(
R

r0

)2

(1− cos(θ − α))
sin2(α)

sin2(θ − α)
− 1

2

(
R

r0

)2

(1− cosα) cos θ − (g(θ))1/3 (15)

By solving equation (7) for α and substituting to equation (15) we obtain ∆U as a function
of the Young’s contact angle θ and the dimensionless curvature r0/R of the membrane. Figure
8B in the main text shows ∆U in units of 4πr20σ as a function of r0/R for four different values
of the contact angle θ. Interestingly, independent of the θ-value, ∆U is found to decrease with
increasing curvature of the membrane. The droplet thus ’feels’ the curvature of the membrane.

To clarify why ∆U is a decreasing function of r0/R, we use equations (7), (11) and (12) to
determine the areas of the liquid-vapor and liquid-membrane interfaces as functions of θ and
r0/R. Figure 8C in the main text shows that Alv decreases and Alm increases with r0/R. This
means that the decrease in ∆U with increasing r0/R is caused by shrinking the liquid-vapor
interface and expanding the liquid-surface interface. Intuitively it seems clear that the energet-
ically favorable contact between the droplet and the membrane gets larger as the membrane
gets more concave.

The total energy of the system is a sum of the droplet interfactal energy ∆U and the energy
of bending the membrane

Eb = 2κ

∫
M2dA =

2κ

R2
Alm (16)

Here κ is the bending rigidity modulus of the membrane and M = 1/R is the mean curvature.
Equations (11) and (16) lead to

Eb

4πr20σ
=

κ

σr20
(1− cosα) (17)

By solving equation (7) for α and substituting to equation (17) we obtain the energy Eb of
bending the membrane from a flat state to a spherical cap with radius R.

Figure 8D in the main text shows the total energy ∆U +Eb in units of 4πr20σ as a function
of r0/R for θ = π/3 and three values of the dimensionless parameter κ/σr20. Interestingly, for
small values of κ/σr20 (see the red curve in figure 8D), the total energy ∆U + Eb decreases
with the membrane curvature r0/R, implying that the droplet-membrane intercations drive,
or generate, membrane curvature. For large values of κ/σr20 (see the blue curve in figure 8D),
on the other hand, ∆U + Eb increases while ∆U decreases with increasing r0/R, implying
curvature sensing rather than curvature generation. For intermediate values of κ/σr20 (see the
black curve in figure 8D), ∆U + Eb has a minimum at a certain curvature r0/R.
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