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We consider a spherical cap model illustrated in figure S1. A liquid droplet is placed inside a
sphere of radius R. Alternatively one can think of a droplet placed on a concave membrane
that is shaped as a spherical cap with radius R. The liquid-vapor interface is modeled as a
spherical cap with radius r. The contact angle  between the liquid-vapor and liquid-membrane
interfaces is given by the Young’s equation

cos = Jvm — Olm (1)

o
where o, o, and oy, denote the surface tensions of the liquid-vapor, liquid-membrane and

vapor-membrane interfaces. On the other hand, the geometry of the system illustrated in
figure S1 implies that

f=a+p (2)
and
Rsina =rsinf (3)
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Figure S1: Mlustration of the spherical cap model. The liquid-vapor interface is a spherical cap
with radius ». The membrane has the shape of a spherical cap with radius R. The contact
angle § = o+ (3 is given by the Young’s equation (1), and Rsin« = rsin 3.

*rozycki@ifpan.edu.pl



The volume of the droplet can be written as

4 4
V= gnRg(a) + 379 (6) (4)
where ]
g(a) = 1 (24 cosa) (1 — cosa)? (5)
A spherical droplet with the same volume V' has radius rq given by
4
V= 57?7’3 (6)

Therefore, using equations (2) and (3), we obtain
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Equation (7) determines the angle « for given contact angle # and dimensionless curvature 9/ R
of the surface.
The total interfacial energy of the system illustrated in figure S1 is

U= AlVO' + Alm (Ulm — O'vm> =0 (Alv — Alm COS (9) (8)

where Ay, and A}, denote the areas of the liquid-membrane and liquid-vapor interfaces, respec-
tively, and the second equality in (8) follows from the Young’s equation. Within the framework
of the spherical cap model, these areas are given by

Ay = 27R* (1 — cos ) (9)

and
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where the second equality in (10) follows from equations (2) and (3). It is convenient to use
dimensionless areas of the two interfaces

A = 27r% (1 — cos B) = 27 R?* (1 — cos(f — a)) (10)
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4rrd 2 (ro) (1= cos(t —a)) sin?(f — «) (12)
where 477 is the area of a spherical droplet with volume V = %ﬂrg’. Now the total interfacial

energy of the droplet, as given by equation (8), can be now written as

A (§>2<1 cos(f—a)) 0@ 1 <§>2(1 _cosa)cost  (13)

drric 2 \ro sin?(0 —a) 2 \ro

where 47720 is the interfacial energy of a free, spherical droplet of radius ry. In the limiting
case of a flat substrate, i.e. R — oo and @ — 0 with Ra = rsin 6, we obtain

U

dmtrio

= (9(0))"”* (14)



Thus the difference in the interfacial energy of the droplet placed on the curved and planar
membrane, AU = U(0,ry/R) — U(6,0), is given by

AU 1 (5)2(1_(;03(9_@))&— % (5)2(1_cosa) cosf — (g(0)"°  (15)

4rric 2 \ro sin?( — a) To
By solving equation (7) for o and substituting to equation (15) we obtain AU as a function
of the Young’s contact angle # and the dimensionless curvature ro/R of the membrane. Figure
8B in the main text shows AU in units of 47ric as a function of ry/R for four different values
of the contact angle . Interestingly, independent of the #-value, AU is found to decrease with
increasing curvature of the membrane. The droplet thus 'feels’ the curvature of the membrane.

To clarify why AU is a decreasing function of ry/R, we use equations (7), (11) and (12) to
determine the areas of the liquid-vapor and liquid-membrane interfaces as functions of # and
ro/R. Figure 8C in the main text shows that A, decreases and Ay, increases with ro/R. This
means that the decrease in AU with increasing ro/R is caused by shrinking the liquid-vapor
interface and expanding the liquid-surface interface. Intuitively it seems clear that the energet-
ically favorable contact between the droplet and the membrane gets larger as the membrane
gets more concave.

The total energy of the system is a sum of the droplet interfactal energy AU and the energy
of bending the membrane

R

Here & is the bending rigidity modulus of the membrane and M = 1/R is the mean curvature.
Equations (11) and (16) lead to
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o 2m/M2dA — A, (16)
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By solving equation (7) for o and substituting to equation (17) we obtain the energy Ej, of
bending the membrane from a flat state to a spherical cap with radius R.

Figure 8D in the main text shows the total energy AU + E}, in units of 47rio as a function
of o/ R for § = 7/3 and three values of the dimensionless parameter x/orZ. Interestingly, for
small values of x/org (see the red curve in figure 8D), the total energy AU + F), decreases
with the membrane curvature ro/R, implying that the droplet-membrane intercations drive,
or generate, membrane curvature. For large values of k/or2 (see the blue curve in figure 8D),
on the other hand, AU + Ej, increases while AU decreases with increasing ro/R, implying
curvature sensing rather than curvature generation. For intermediate values of x/orZ (see the
black curve in figure 8D), AU + Ej, has a minimum at a certain curvature ro/R.



