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1. Amino acid sequences of artificial proteins

Amino acids in red comprise the coiled-coil P domains, while amino acids in blue comprise the 
random coil Cx domains. Cysteine residues are in green.

PC10P: 

MRGSHHHHHHGSGDLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDAS
GTSYRDPMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAG
AGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGARMPTSGSGDL 
APQMLRELQETNAALQDVRELLRQQVKE ITFLKNTVMESDASGKLN

PC30P:

MRGSHHHHHHGSGDLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDAS
GTSYRDPMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAG
AGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGARMPTSYRDPMGA
GAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGA
GAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGARMPTSYRDPMGAGAGAGPEGAG
AGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAG
AGPEGAGAGAGPEGAGAGAGPEGARMPTSGSGDLAPQMLRELQETNAALQDVRELLR
QQVKEITFLKNTVMESDASGKLN

C10(PC10)4:

MRGSHHHHHHGSDDDDKASYRDPMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGA
GAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGA
GPEGARMPTSAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASGTSYRD
PMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPE
GAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGARMPTSAPQMLRELQETNA
ALQDVRELLRQQVKEITFLKNTVMESDASGTSYRDPMGAGAGAGPEGAGAGAGPEGA
GAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGA
GAGPEGAGAGAGPEGARMPTSAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVM
ESDASGTSYRDPMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAG
PEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGARMPTSAP
QMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASGTSYRDPMGAGAGAGPEG
AGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAG
AGAGPEGAGAGAGPEGAGAGAGPEGARMPTSW 

PC5-cys-C5P: 

MRGSHHHHHHGSGDLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDAS
GTSYRDPMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGCA
GAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGARMPTSGSGDLA
PQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASGKLN
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PC5-cys-C25P:

MRGSHHHHHHGSGDLAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDAS
GTSYRDPMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGCA
GAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGARMPTSYRDPMG
AGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAG
AGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGARMPTSYRDPMGAGAGAGPEGA
GAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGA
GAGPEGAGAGAGPEGAGAGAGPEGARMPTSGSGDLAPQMLRELQETNAALQDVRELL
RQQVKEITFLKNTVMESDASGKLN

C10(PC10)4-cys:

MRGSHHHHHHGSDDDDKTSYRDPMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGA
GAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGA 
GPEGARMPTSAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASGTSYRD 
PMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPE 
GAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGARMPTSAPQMLRELQETNA
ALQDVRELLRQQVKEITFLKNTVMESDASGTSYRDPMGAGAGAGPEGAGAGAGPEGA
GAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGA
GAGPEGAGAGAGPEGARMPTSAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVM
ESDASGTSYRDPMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAG
PEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGARMPTSAP
QMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASGTSYRDPMGAGAGAGPEG
AGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAG
AGAGPEGAGAGAGPEGAGAGAGPEGARMPTSCKLNS

C5PC5-cys:

MRGSHHHHHHGSCASAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGA
GPEGARMPTSAPQMLRELQETNAALQDVRELLRQQVKEITFLKNTVMESDASGTSYRD
PMGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGAGAGAGPEGTSDDDDKR
SHHHHHH



5

2. Neutron scattering patterns and fit parameters for all gels

Figure S1. Combined SANS and USANS patterns for all protein gels collected at 25 C fit to the °
double-correlation-length model (Eq. 4 in the main text) with fit components provided in gray.
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Table S1. Neutron scattering fit parameters for all protein gels measured at 25 C from fits to the °
double-correlation-length model (Equation 4 in the main text). Uncertainties are standard 
deviations of fits to 100 bootstrapped replicas of each scattering pattern, as described in Ref.1 
Concentrations were chosen to match junction densities across different protein gels.

PC10P
7% 12.5% 20% 30%

𝐴 (1 ± 3) × 10 ‒ 7 (5 ± 7) × 10 ‒ 7 (6 ± 7) × 10 ‒ 7 (1 ± 1) × 10 ‒ 7

𝑛 3.0 ± 0.3 2.8 ± 0.2 2.8 ± 0.2 3.0 ± 0.2
 𝐵 [𝑐𝑚 ‒ 1] 220 ± 60 100 ± 20 100 ± 30 150 ± 20
Ξ [𝑛𝑚] 59 ± 9 30 ± 3 28 ± 4 34 ± 2

𝑚1 2.18 ± 0.05 2.81 ± 0.06 2.77 ± 0.06 2.73 ± 0.04
𝐶 [𝑐𝑚 ‒ 1] 0.64 ± 0.02 0.920 ± 0.007 1.112 ± 0.006 1.189 ± 0.003

𝑞0 [𝑛𝑚 ‒ 1] 0.369 ± 0.006 0.413 ± 0.004 0.475 ± 0.003 0.526 ± 0.002

 𝜉 [𝑛𝑚] 2.71 ± 0.02 2.72 ± 0.02 2.88 ± 0.03 2.80 ± 0.02
𝑚2 1.70 ± 0.01 1.64 ± 0.01 1.54 ± 0.01 1.468 ± 0.007

𝐷 [𝑐𝑚 ‒ 1] 0.0919 ± 0.0003 0.1087 ± 0.0003 0.1466 ± 0.0004 0.1739 ± 0.0005

PC30P
4% 7% 12.5% 22%

𝐴 (6 ± 10) × 10 ‒ 5 (1 ± 5) × 10 ‒ 5 (3 ± 6) × 10 ‒ 5 (3 ± 4) × 10 ‒ 6

𝑛 2.2 ± 0.2 2.6 ± 0.3 2.3 ± 0.3 2.6 ± 0.2
 𝐵 [𝑐𝑚 ‒ 1] 300 ± 100 60 ± 10 100 ± 10 150 ± 10
Ξ [𝑛𝑚] 90 ± 20 24 ± 2 23 ± 1 22.7 ± 0.6

𝑚1 2.03 ± 0.06 3.1 ± 0.1 3.3 ± 0.1 3.38 ± 0.04
 𝐶 [𝑐𝑚 ‒ 1] 0.50 ± 0.03 0.35 ± 0.02 0.50 ± 0.02 0.592 ± 0.005

𝑞0 [𝑛𝑚 ‒ 1] 0.208 ± 0.001 0.31 ± 0.02 0.359 ± 0.009 0.411 ± 0.005

 𝜉 [𝑛𝑚] 13.0 ± 0.4 3.06 ± 0.04 2.95 ± 0.03 2.59 ± 0.02
𝑚2 1.7 ± 0.2 1.57 ± 0.03 1.62 ± 0.02 1.62 ± 0.02

𝐷 [𝑐𝑚 ‒ 1] 0.0544 ± 0.0002 0.0694 ± 0.0003 0.1361 ± 0.0004 0.1536 ± 0.0005

C10(PC10)4
6.5% 10.5% 19% 31%

𝐴 (2 ± 1) × 107 (6 ± 8) × 106 (4 ± 4) × 106 (2 ± 2) × 107

𝑅𝑎𝑔𝑔 [𝑛𝑚] (4 ± 3) × 107 (7 ± 10) × 106 (4 ± 5) × 106 (1 ± 2) × 107

𝑠 1 ± 1 0.4 ± 0.1 0.3 ± 0.1 0.31 ± 0.07
 𝐵 [𝑐𝑚 ‒ 1] 65 ± 9 144 ± 7 340 ± 20 288 ± 9
Ξ [𝑛𝑚] 23 ± 1 24.0 ± 0.3 26.0 ± 0.3 23.5 ± 0.1

𝑚1 3.89 ± 0.09 4.00 4.00 4.000 ± 0.002
 𝐶 [𝑐𝑚 ‒ 1] 0.62 ± 0.01 0.5366 ± 0.0009 0.623 ± 0.001 2.429 ± 0.004

𝑞0 [𝑛𝑚 ‒ 1] 0.228 ± 0.009 0.435 ± 0.002 0.577 ± 0.001 0.3037 ± 0.0006

 𝜉 [𝑛𝑚] 2.54 ± 0.02 2.28 ± 0.01 2.33 ± 0.02 4.62 ± 0.01
𝑚2 1.88 ± 0.01 1.84 ± 0.01 1.739 ± 0.009 1.745 ± 0.003

𝐷 [𝑐𝑚 ‒ 1] 0.0713 ± 0.0002 0.1058 ± 0.0002 0.2126 ± 0.0004 0.2051 ± 0.0003
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(A) (B) (C)

Figure S2. Structural length scales of all protein gels from fits of the combined SANS/USANS 
patterns to the double-correlation-length model (Equation 4 in the main text) as a function of 
junction density: (A) Correlation blob size , (B) inter-junction spacing , and (C) large-scale 𝜉 2𝜋/𝑞0

correlation length . Error bars are standard deviations from 100 bootstrapped replicates of each Ξ
combined scattering pattern. In Panel B the theoretical spacing is calculated assuming a random 
junction distribution as in an ideal gas, discussed in Section 7 of the Supplementary Information.

From the values of  obtained from fits to the double-correlation-length model (see 𝐵

Equation 5b in the main text) and the calculated scattering length densities of the protein and 

deuterated buffer, the root-mean-square fractional static density fluctuation associated with the 

large-scale correlation length  can be estimated for each gel. The scattering amplitude  in Ξ 𝐵

Equation 5b associated with fluctuations on the length scale  can be approximated as2 Ξ

𝐵 ≈ (𝜌𝑝𝑟𝑜𝑡𝑒𝑖𝑛 ‒ 𝜌𝑏𝑢𝑓𝑓𝑒𝑟)2(⟨𝛿𝑐2⟩
𝑐2 )Ξ3#(𝑆1)

where  is the coherent neutron scattering length density of species  and  is the fractional 𝜌𝑖 𝑖 ⟨𝛿𝑐2⟩/𝑐2

mean-square concentration fluctuation associated with the length scale . The scattering length Ξ

densities of the protein and buffer components were calculated from their chemical composition 

using bound neutron scattering lengths of common atoms tabulated by NIST.3 The protein mass 

density was approximated as 1.3 g/mL, as in prior work,4 and the buffer was approximated as pure 

D2O, which has a mass density of 1.11 g/mL. The scattering length densities computed using the 

NIST calculator were  for all proteins and  for the 𝜌𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 1.9 × 1014 𝑚 ‒ 2 𝜌𝑏𝑢𝑓𝑓𝑒𝑟 = 6.39 × 1014 𝑚 ‒ 2
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buffer, as summarized in Table S2. Supplying these scattering length densities and best-fit length 

scales  into Eq. S1 results in calculated root-mean-square static density fluctuations ranging from Ξ

 for all the gels, depending on the concentration, as shown in Figure S3. 
⟨𝛿𝑐2⟩

1
2 𝑐 = 0.01 ‒ 0.12

Table S2. Coherent neutron scattering length densities of materials calculated from their chemical 
composition and density using atomic bound scattering lengths tabulated by NIST.

Material Chemical 
composition

Density 
(g/mL)

Scattering length 
density ( )× 1014 𝑚 ‒ 2

PC10P C854H1366N272O301S7 1.3 1.9
PC30P C1508H2366N488O555S11 1.3 1.9

C10(PC10)4 C2595H4077N829O959S19 1.3 1.9
Buffer D2O 1.11 6.39

Figure S3. Root-mean-square static density fluctuation associated with the large-scale correlation 
length  in all protein gels as a function of junction density.Ξ
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Figure S4. Fits of the neutron scattering data for the C10(PC10)4 gels to the double-correlation-
length model using a power-law term for the low-q region, which does not decay fast enough to 
allow fitting of the higher-q regions. 
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(A)

(B)

(C)

Figure S5. Representative histograms for fit parameters from 100 bootstrapped replicates of the 
combined SANS/USANS patterns for (A) PC10P, 12.5%, (B) PC30P, 12.5%, and (C) C10(PC10)4, 
6.5% fit to the double-correlation-length model (Equation 4).
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3. Frequency sweeps of protein gels

Figure S6. Frequency sweeps of all protein gels of various concentrations obtained at 35 C with °
a 2% strain (within the linear viscoelastic regime).
 

4. Two-state model for anomalous diffusive behavior

A. Model description

Forced Rayleigh scattering data for self-diffusion and tracer diffusion of associative 

proteins were quantitatively analyzed using a previously developed two-state reaction-diffusion 
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model. Full details of the model and its predicted diffusion regimes are provided in Refs. 4,5 and 

summarized in this section. Briefly, the model postulates that associative polymers can exist in 

two diffusive states  and  with distinct diffusivities  and , respectively. These states 𝐴 𝐹 𝐷𝑠𝑙𝑜𝑤 𝐷𝑓𝑎𝑠𝑡

may correspond to an associated state , where at least one sticker of a molecule is bound to the 𝐴

network, and a free state , where the molecule is completely detached from the network (also 𝐹

termed hopping). However, the two-state model does not specify the exact molecular origin for 

each self-diffusive state. The diffusive species are assumed to interconvert according to the 

dynamic equilibrium

𝐴⇌𝐹#(𝑆2)

where the forward and reverse interconversion rates are governed by pseudo-first-order rate 

constants  and , respectively, which are related by the pseudo-first-order effective 𝑘𝑜𝑓𝑓 𝑘𝑜𝑛

equilibrium constant . Conservation of mass implies the following coupled equations 𝜅𝑒𝑞 = 𝑘𝑜𝑛/𝑘𝑜𝑓𝑓

governing the reaction and diffusion dynamics of each species (in each dimension):

∂[𝐴]
∂𝑡

= 𝐷𝑠𝑙𝑜𝑤
∂2[𝐴]

∂𝑥2
+ 𝑘𝑜𝑛[𝐹] ‒ 𝑘𝑜𝑓𝑓[𝐴]#(𝑆3𝑎)

∂[𝐹]
∂𝑡

= 𝐷𝑓𝑎𝑠𝑡
∂2[𝐹]

∂𝑥2
‒ 𝑘𝑜𝑛[𝐹] + 𝑘𝑜𝑓𝑓[𝐴]#(𝑆3𝑏)

This coupled system can be solved by Fourier transform4 to obtain an analytical relationship 

between the self-diffusion relaxation time  and grating spacing  of the FRS experiment, ⟨𝜏⟩ 𝑑2/4𝜋2

as shown graphically in Figure S7A. 

For diffusion of a single-sticker tracer through the associative protein gels, the two 

diffusive states hypothesized by the model are expected to correspond exactly to its associated and 

free molecular states, respectively. This allows the forward and reverse interconversion rates in 

Eq. S3 to be expressed as intrinsic single-sticker association and dissociation rate constants, 
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denoted  and , respectively, rather than  and . Here,  is a pseudo-first-order forward 𝑘 ∗
𝐴 𝑘𝐷 𝑘𝑜𝑛 𝑘𝑜𝑓𝑓 𝑘 ∗

𝐴

rate constant related to the true second-order rate constant via , where  is the 𝑘 ∗
𝐴 = 𝑘𝐴𝐹𝑒𝑞 𝐹𝑒𝑞

equilibrium density of free binding sites. Similarly, the pseudo-first-order equilibrium constant for 

single-sticker association is defined as , where  is the second-order 𝐾 ∗
𝑒𝑞 = 𝐹𝑒𝑞𝐾𝑒𝑞 𝐾𝑒𝑞 = 𝑘𝐴/𝑘𝐷

equilibrium constant for coiled-coil association. Note that the single-sticker equilibrium constants 

 and  are distinct from the two-state model parameter , which describes the 𝐾𝑒𝑞 𝐾 ∗
𝑒𝑞 𝜅𝑒𝑞 = 𝑘𝑜𝑛/𝑘𝑜𝑓𝑓

interconversion between the two apparent self-diffusive species rather than individual stickers. 

Furthermore, the best-fit diffusivity of the slow (i.e., associated) state of the single-sticker tracer 

is found to be  for all tracer diffusion data, which results in a plateau in the relaxation time 𝐷𝑠𝑙𝑜𝑤 = 0

down to the smallest length scales. The predicted diffusive regimes for single-sticker tracer 

diffusion from the two-state model are graphically illustrated in Figure S7B.

B. Model predictions

Examining the predicted regimes for self- and tracer diffusion in Figure S7 allows various 

relevant length and time scales governing their dynamics to be quantitatively inferred. For self-

diffusion (Figure S7A), the two-state model predicts a small-length-scale Fickian regime with 

diffusivity governed by the slow mode, , followed by an apparent superdiffusive regime with 𝐷𝑠𝑙𝑜𝑤

an inflection point at the transition timescale , followed by a large-length-scale Fickian 𝜏𝑜𝑓𝑓 = 𝑘 ‒ 1
𝑜𝑓𝑓

regime with terminal diffusivity governed by the diffusivity of the fast mode, , weighted by 𝐷𝑓𝑎𝑠𝑡

its population (Eq. 6 of the main text). The length scales governing the transition between the slow 

and fast diffusive modes,  and , can also be calculated from the intersection 𝑑 2
𝑠𝑙𝑜𝑤/4𝜋2 𝑑 2

𝑓𝑎𝑠𝑡/4𝜋2

between the small- and large-length-scale Fickian regimes and the interconversion timescale  𝑘 ‒ 1
𝑜𝑓𝑓

(Eq. 7 of the main text).
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For single-sticker tracer diffusion, the two-state model predicts a plateau on small length 

scales with relaxation time equal to the sticker dissociation time, , followed by terminal 𝜏𝐷 = 𝑘 ‒ 1
𝐷

Fickian diffusion with diffusivity governed by the diffusivity of the free molecule, , weighted 𝐷𝑓𝑟𝑒𝑒

by the fraction of free molecules. The length scale governing the transition to terminal Fickian 

diffusion, , can be calculated from the intersection between the terminal Fickian 𝑑 2
ℎ𝑜𝑝,𝑡𝑟𝑎𝑐𝑒𝑟/4𝜋2

regime and the dissociation timescale .𝑘 ‒ 1
𝐷

Figure S7. Representative predictions of the two-state model for (A) self-diffusion and (B) tracer 
diffusion. Parameters used for these example plots are (A) , , 𝑘𝑜𝑛 = 100 𝑠 ‒ 1 𝑘𝑜𝑓𝑓 = 1 𝑠 ‒ 1

,  and (B) , , and . 𝐷𝑠𝑙𝑜𝑤 = 25 𝑛𝑚2𝑠 ‒ 1 𝐷𝑓𝑎𝑠𝑡 = 4 × 106 𝑛𝑚2𝑠 ‒ 1 𝑘𝑜𝑛 = 100 𝑠 ‒ 1 𝑘𝑜𝑓𝑓 = 1 𝑠 ‒ 1 𝐷𝑓𝑟𝑒𝑒 = 106 𝑛𝑚2𝑠 ‒ 1

Analytical expressions for the relationship between  and  for the small- and large-length-⟨𝜏⟩ 𝑑2/4𝜋2

scale Fickian regimes are provided above each plot, where by definition  and 𝛾 = 𝐷𝑠𝑙𝑜𝑤/𝐷𝑓𝑎𝑠𝑡

.𝜅 = 𝑘𝑜𝑛/𝑘𝑜𝑓𝑓

5. Method to calculate mean-first-passage dissociation times

Mean-first-passage times for the conversion from the fully bonded state to the fully 

unbonded state for a chain with  stickers were calculated by assuming that each sticker undergoes 𝑆
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stochastic association and dissociation reactions with pseudo-first-order rate constants  and , 𝑘 ∗
𝐴 𝑘𝐷

respectively, and that each sticker’s dynamics are uncorrelated from the others. The pseudo-first-

order equilibrium constant is defined as . The time evolution of the chain’s bonding 𝐾 ∗
𝑒𝑞 = 𝑘 ∗

𝐴 /𝑘𝐷

configuration (i.e., its number of bonded stickers ) is analogous to a random walk on a one-𝑛 ∈ [0,𝑆]

dimensional lattice with sites corresponding to the number of bonded stickers, , and transition 𝑛

probabilities given by the rate constants  and  multiplied by the degeneracy of each transition, 𝑘 ∗
𝐴 𝑘𝐷

as shown in Figure S8.

Figure S8. Schematic of a random walk on a one-dimensional lattice with sites corresponding to 
 bonded stickers with transition probabilities given by the rate constants  and  𝑛 ∈ [0,𝑆] 𝑘 ∗

𝐴 𝑘𝐷

multiplied by their respective degeneracies (assuming identical average dynamics of each sticker).

The time evolution of this system is governed by the following coupled equations, where  is 𝑃𝑛(𝑡)

the probability of occupancy of site :𝑛

𝑑𝑃0(𝑡)

𝑑𝑡
= 𝑘𝐷𝑃1(𝑡)#(𝑆4𝑎)

𝑑𝑃𝑛 ∈ [1,𝑆 ‒ 1](𝑡)

𝑑𝑡
=‒ 𝑘 ∗

𝐴 (𝑆 ‒ 𝑛)𝑃𝑛(𝑡) ‒ 𝑘𝐷𝑛𝑃𝑛(𝑡) + 𝑘 ∗
𝐴 (𝑆 ‒ 𝑛 + 1)𝑃𝑛 ‒ 1(𝑡) + 𝑘𝐷(𝑛 + 1)𝑃𝑛 + 1(𝑡)#(𝑆4𝑏)

𝑑𝑃𝑆(𝑡)

𝑑𝑡
=‒ 𝑘𝐷𝑆𝑃𝑠(𝑡) + 𝑘 ∗

𝐴 𝑃𝑆 ‒ 1(𝑡)#(𝑆4𝑐)

Equation S4 can be expressed in matrix-vector form:

�̇�(𝑡) = 𝑊𝑃(𝑡)#(𝑆5)
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where  is an  element vector of the probabilities of occupying states  and  is an 𝑃(𝑡) 𝑆 + 1 𝑛 ∈ [0,𝑆] 𝑊

 element matrix containing the transition probabilities corresponding to Equation (𝑆 + 1) × (𝑆 + 1)

S4. Thus, for , the elements of  are given by𝑛 ∈ [1,𝑆 ‒ 1] 𝑊

𝑊𝑛,𝑛 ‒ 1 = 𝑘 ∗
𝐴 (𝑆 ‒ 𝑛 + 1)#(𝑆6𝑎)

𝑊�𝑛,𝑛 = ‒ 𝑘 ∗
𝐴 (𝑆 ‒ 𝑛) ‒ 𝑘𝐷𝑛#(𝑆6𝑏)

𝑊𝑛,𝑛 + 1 = 𝑘𝐷(𝑛 + 1)#(𝑆6𝑐)

To solve for the mean-first-passage time for conversion from the  to the  state, an 𝑛 = 𝑆 𝑛 = 0

absorptive boundary condition is applied to the  site, such that for all 𝑛 = 0 𝑛

𝑊𝑛,0 = 0#(𝑆6𝑑)

which is also reflected in Equation S4a. This ensures that once the chain has reached the fully 

dissociated state ( ) it stays there for all later times. 𝑛 = 0

The initial condition for the system is designated to be the fully bonded state, i.e., 

 and , such that𝑃𝑆(0) = 1 𝑃𝑛 < 𝑆(0) = 0

𝑃(0) = (0
0
…
1

)#(𝑆7)

The initial value problem given by Equations S5 and S7 is then solved by the matrix exponential:

𝑃(𝑡) = exp (𝑊𝑡)𝑃(0)#(𝑆8)

The survival probability for this random walk, i.e., the probability that the chain still has at least 

one bonded sticker, is given by 

𝑆(𝑡) =
𝑆

∑
𝑛 = 1

𝑃𝑛(𝑡)#(𝑆9)

and the mean-first-passage dissociation time is given by the time-averaged survival probability,

𝜏𝑀𝐹𝑃 =
∞

∫
0

𝑆(𝑡)𝑑𝑡#(𝑆10)
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To calculate the normalized dissociation times, the mean-first-passage times are divided by the 

single-sticker dissociation time given by . Normalized mean-first-passage dissociation 𝜏𝐷 = 𝑘 ‒ 1
𝐷

times for various values of  and  are shown in Figure S9.𝑆 𝐾 ∗
𝑒𝑞

Figure S9. Normalized mean-first-passage dissociation times as a function of  for various 𝐾 ∗
𝑒𝑞

values of .𝑆

6. Other supplementary figures referenced in the main text 

Figure S10. Terminal self-diffusion coefficient, , for each protein gel as a function of volume 𝐷𝑒𝑓𝑓

fraction, , at 35 C. 𝜙 °
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Figure S11. Hopping distance for the single-sticker tracer, calculated from the two-state model fit 
parameters via Equation 7 in the main text, for each protein gel as a function of volume fraction. 

Figure S12. Comparison of single-sticker dissociation time, , measured from tracer diffusion 𝜏𝐷

experiments and network relaxation time, , measured by shear rheology for all protein gels as a 𝜏𝑒𝑥

function of concentration.
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Figure S13. Comparison of the terminal diffusion coefficients as a function of number of stickers 
per chain, both corrected for changes in viscosity and molecular weight (open symbols) and 
uncorrected (closed symbols). 

7. Calculation of theoretical junction spacing in the gel

Assuming a random distribution of network junctions (as in an ideal gas), the average 

distance between junctions can be estimated as the diameter of a sphere with volume equal to the 

inverse number density of junctions in the gel. The number density of the junctions in the gel, 

, is determined from the total protein concentration, molar mass, number of coiled-coil 𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

domains per chain, and pentameric junction aggregation number. The average distance between 

junctions can then be calculated as 

𝑑𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 2( 3
4𝜋𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

)
1
3#(𝑆11)
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