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FINAL CONFIGURATIONS

An archive of simulated final configurations for the data set depicted in Figure 3 of the main text is provided at
https://doi.org/10.5281/zenodo.7712001 via Zenodo. In particular, we provide a zipped archive of the final configura-
tions, snapshot images, and diffraction patterns for all simulations performed using N = 2000 particles. The files are
organized into folders and accompanied by HTML documents which allow for a rapid visualization of all simulation
results for a single size ratio.

HEXL
+ PHASE AT DIFFERENT COMPOSITIONS

As mentioned in the main text, we use the label HexL
+ to refer to any phase consisting of a hexagonal lattice

of large spheres interspersed with small spheres, regardless of the ordering of the smaller spheres. In Fig. 1, we
show snapshots for a range of different compositions. The hexagonal symmetry of the large-sphere lattice remains in
place even though the concentration of small spheres varies drastically. For low compositions xS , only a few small
spheres are randomly interspersed in the triangular holes in the lattice. This concentration increases all the way
up to xS ≃ 2/3, at which point all triangular holes in the lattice are filled, corresponding to the T1 crystal phase.
Above this concentration, the large particles start to become more separated, as additional small particles fill the gaps
between them. While this leads to local lattice distortions and a decrease in hexagonal ordering (e.g. at xS = 0.7),
overall the system maintains its hexagonal symmetry. In principle, pushing these systems to larger packing fractions
may stabilize more ordered phases, such as those predicted by the infinite-pressure phase diagram in the main text.
However, these high-density phases are likely hard to reach via spontaneous self-assembly due to the kinetic arrest
that occurs at high packing fractions.

TILING ANALYSIS

The quasicrystalline phases can be rationalised as tilings of the plane by decorated tiles. To identify the underlying
tiling in simulation snapshots, we first create bonds between all large particles within a cutoff distance of 1.3σLL

for QC12 and 1.7σLL for QC8 systems. Since the QC8 contains short and long bonds, the long cutoff distance
required to capture long bonds also generates crossing bonds within S1 tiles, which need to be removed. Tiles are
then reconstructed from cycles in the bond network, and sorted by shape and orientation.

To characterise the neighbour network, we compute the bonds length and angle distributions, as shown in Figure
2. Bond angles are relative to the horizontal. In the vicinity of the QC8 region, the bond length distribution is
clearly bimodal. A cutoff is set at the minimum of the distribution in-between the two peaks, which discriminates
between long and short bonds. Since the cutoff value can vary slightly with the composition and packing fraction of
the system, we determine it automatically for each snapshot. The bond angle distribution exhibits 16 sharp peaks
centered on the directions of an ideal tiling of large squares, small squares and equilateral triangles. Correlating the
orientation with the bond length shows that short and long bonds each follow a distinct set of 8 orientations, offset
by π/8.

TILES FRACTIONS IN QC8

For the square-triangle tiling associated with the QC12 phase, it is well known that global twelve-fold symmetry
only occurs under the condition that the two area fractions of the tiling covered by squares and triangles are the
same and equal to 1/2 [1, 2]. Here, we determine under what conditions the QC8 phase can exhibit 8-fold symmetry.
To this end, we consider a QC8 tiling consisting of large squares S, small squares s, and triangles T , with long edge
length a. Counting the different orientations, this results in a total of 12 different tiles: two orientations of both types
of squares, and 8 orientations of the triangles. These are listed in Table I. We then consider an infinite, globally
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a) xS = 0:1 b) xS = 0:2

c) xS = 0:3 d) xS = 0:4

e) xS = 0:5 f) xS = 0:6

g) xS = 0:7 h) xS = 0:8

FIG. 1. Variations of the HexL
+ phase, at size ratio q = 0:35 and varying compositions xS . The packing fractions for the

snapshots vary from � = 0:82 in (a) to � = 0:96 in (h), in steps of 0:02.

uniform[2] tiling consisting of a mixture of these tiles, with the area fraction covered by each tile type denoted as Σi

for the large squares, σi for the small squares, and τi for the triangles, where i denotes the orientation of the tile.
The first obvious constraint on our tiling is that it should cover the entire plane. Hence, the area fractions must

satisfy

Σ + σ + τ = 1, (1)

where Σ =
P

i Σi, σ =
P

i σi, and τ =
P

i τi.
One set of constraints on these tile concentrations follows from the simple observation that each edge must have an

opposing partner. Considering, for example, the short edge in triangle T1, this leads to the constraint that

nT1 + ns1 = nT5 + ns1 , (2)

with nXi
denotes the number of tiles of type Xi. This trivially implies that τ1 = τ5 = τ15/2, and likewise it can be

shown that τ2 = τ6 = τ26/2, τ3 = τ7 = τ37/2, and τ4 = τ8 = τ48/2.




