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Experimental section 

Time-conversion study. 

Different feed ratios of HEAm, ODA, and 1 mol% of AIBN relative to the total monomer amount were added to a 

pressure-resistant glass tube (ACE GLASS). To this glass tube, toluene and DMF at a volume ratio of 4:1 was 

added in a glove box filled with N2 and sealed with a rubber septum. The total concentration was kept constant at 

0.2 M. The polymerization was carried out at 60 °C. A small amount of solution was taken by a syringe under Ar 

flow in predetermined intervals, and the solution was cooled to -50 ̊C to terminate the progress of 

copolymerization. The actual monomer feed ratio was determined by 1H NMR before the reaction. The 

conversion of the vinyl group was determined by 1H NMR in CDCl3 using the methylene group of ODA as an 

internal standard. The time-conversion study for the molecular feed ratio of ODA : HEAm = 9:1 could not be 

analyzed due to the overlap of 1H peaks of vinyl groups in this feed ratio.  

Evaluation of monomer reactivity ratios by Fineman-Ross plot 

Monomer reactivity ratios, r1 and r2 (M1 : HEAm and M2 : ODA), were determined using a Fineman–Ross 

method1, which used the following equation  

F(f-1)/f =r1 (F2/f) -r2 

 F =[M1]0/[M2]0 where [M1]0 and [M2]0 are initial HEAm and ODA concentrations and f = P[M1]/P[M2], where 

P[M1] and P[M2] are the compositions of HEAm and ODA in the copolymer. Similar to the time-conversion study, 

HEAm, ODA and AIBN (1 mol% relative to the total monomer amount) were added to a pressure-resistant glass 

tube (ACE GLASS). To this glass tube, toluene and DMF at a volume ratio of 4:1 was added in a glove box filled 

with N2 to give a total solute concentration of 0.2 M. The actual feed monomer ratios were [M1]0: [M2]0 = 3:7, 4:6, 

5:5, 6:4, and 8:2, which were determined by 1H NMR of the solution before the polymerization. The 

polymerization was carried out at 60˚C and terminated at a total conversion of less than 6% except for the 

copolymerization with the monomer feed ratio of HEAm: ODA = 3: 7, which was 13%. The copolymer 

composition was calculated using the monomer conversion determined by 1H NMR using methylene groups of 

ODA as an internal standard. F(f-1)/f was plotted against F2/f. Then the data points are fitted to a straight line. The 

slope of the straight line gives r1 and the intercept gives r2. 

HEAm length calculation 

The side chain length of HEAm was calculated by a molecular model created using Winmostar V11, which uses 

MOPAC to perform structure energy minimization.  

Powder XRD measurement. 
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p(ODA50/HEAm50) powder was placed in a glass sample tube. The glass tube was put into an oven at 115 ˚C for 

24 h. Then the copolymer powder was placed in a glass sample holder to measure XRD. The measurement 

condition is the same for out-of-plane XRD measurement.   

  



 4 

 

 

 

Chemical Shift / ppm 

Figure S1 1H-NMR spectrum of ODA 
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Figure S2 1H spectrum for p(ODA/HEAm). (a) p(ODA40/HEAm60), (b) p(ODA50/HEAm50), (c) 

p(ODA60/HEAm40), (d) p(ODA70/HEAm30), (e) p(ODA90/HEAm10).  
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(e)  
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Figure S3 13C-NMR spectrum for p(ODA/HEAm). (a) p(ODA40/HEAm60), 

 (b) p(ODA50/HEAm50), (c) p(ODA60/HEAm40), (d) p(ODA70/HEAm30), and 

 (e) p(ODA90/HEAm10). 
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Figure S4 Experimental geometry for (a) out-of-plane XRD, (b) in-plane XRD and (c) 2D GI-

XRD.2  
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Figure S5 Time-conversion curves for the free radical copolymerization of ODA and HEAm with the 

molar feed ratio of ODA : HEAm to (a) 4:6, (b) 5:5, (c) 6:4, and (d) 7:3.  
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Figure S6 Fineman-Ross plot for HEAm : ODA copolymerization. The straight line indicates linear 

fit with correlation coefficient R2 = 0.968  
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Figure S7 DSC curve for the third heating and cooling curve for (a) p(ODA40/HEAm60), (b) 

p(ODA50/HEAm50), (c) p(ODA60/HEAm40), (d) p(ODA70/HEAm30), and (e) p(ODA90/HEAm10). 
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(a)  
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Figure S8 2D-XRD image for (a) p(ODA40/HEAm60) and (b) p(ODA90/HEAm10). All the films were thermally 

annealed for 24 h. 
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(a) 

 

(b) 

 

(c) 

 

Figure S9 2D-XRD image and 1D intensity profile for out of plane for (a) p(ODA50/HEAm50), (b) 

p(ODA60/HEAm40), (c) p(ODA70/HEAm30). All the films were thermally annealed at ~Tg + 10 ˚C for 24 h. 

The 1D intensity profiles were extracted from the 2D images. The side peak appeared in q higher than the Bragg 

peak is originated from a diffraction from the reflected X-ray beam.2  
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Figure S10 (a)XRD patterns of p(ODA50/HEAm50) annealed at 160 ˚C at different times. (b) Expand graph of 

XRD pattern for 6 h annealed film. (c) Deconvolution of first-order Bragg peak in figure (b). Right table is the 

fitting results.  
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(a) 

(b) 

(c) 

Figure S11 2D-XRD image (right) and 1D intensity profile for out of plane (left) for (a) p(ODA50/HEAm50), (b) 

p(ODA60/HEAm40), (c) p(ODA70/HEAm30). All the films were thermally annealed at 160 ˚C for 1.5 h. The 1D 

intensity profiles were extracted from the 2D images. The higher q value peak in p(ODA50/HEAm50) (q = 1.6 

nm-1) and p(ODA60/HEAm40) (q = 1.7 nm-1) is attributed to remaining monolayer lamellar structure.  
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Figure S12 Fitting result for qhex peak of copolymer lamellar film for (a) p(ODA70/HEAm30), (b) 

p(ODA60/HEAm40) (c) p(ODA50/HEAm50) annealed at 115 ˚C for 24 h and (d) p(ODA50/HEAm50) annealed 

at 160 ˚C for 6 h Upper graph in each spectrum is the residual for the fitting results.  
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Peak position / cm-1 Area / %  Peak position / cm-1 Area / % 
2919.2 (trans) 78.6  2919.3 (trans) 74.4 
2932.3 (gauche) 21.5  2931.7 (gauche) 25.6 

 

 

Figure S13 Deconvolution of CH2 asymmetric stretching (νa) for p(ODA50/HEAm50) film annealed at (a) 115 ˚C 

for 24 h and (b) 160 ˚C for 6 h Upper graph in each spectrum is the residual for the fitting results and bottom table 

is the fitting results.  
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Figure S14 Length calculation of HEAm side chains. yellow: hydrogen, red: oxygen, green: carbon and blue: 

nitrogen 
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Figure S15 XRD pattern of p(ODA50/HEAm50) powder annealed at 115 ˚C for 24h. Strong diffraction at q = 15 

nm-1 is attributed to diffraction from hexagonally packed alkyl side chains. 
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