Supporting information

Order–order transitions in poly(*N*-octadecyl acrylamide-cohydroxyethyl acrylamide) statistical copolymer films

Mao Kikuchi[†], Nozomi Saito[‡], Mizuki, Ohke[†], Shusaku Nagano[§], Shotaro Nishitsuji[⊥], and Jun Matsui[‡]

[†]Graduate School of Science and Engineering, [‡]Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi,

Yamagata 990-8560, Japan

[§] College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan

¹Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Japan

Contents

1.	Experimental section	P2-P3
2.	NMR spectra	P3-P10
3.	Schematic for out-of-plane and in-plane XRD as well as 2D GI-XRD measurements	P11
4.	Time-conversion curves for the copolymerization	P12
5.	Fineman-Ross plot	P13
6.	DSC spectra	P14
7.	XRD patterns (1D and 2D)	P15-P18
8.	Fitting results for the in-plane XRD patterns and FT-IR spectra	P19-P20
9.	HEAm molecular model	P21
10.	Powder XRD pattern for p(ODA50/HEAm50)	P22
11.	Reference	P22

Experimental section

Time-conversion study.

Different feed ratios of HEAm, ODA, and 1 mol% of AIBN relative to the total monomer amount were added to a pressure-resistant glass tube (ACE GLASS). To this glass tube, toluene and DMF at a volume ratio of 4:1 was added in a glove box filled with N₂ and sealed with a rubber septum. The total concentration was kept constant at 0.2 M. The polymerization was carried out at 60 °C. A small amount of solution was taken by a syringe under Ar flow in predetermined intervals, and the solution was cooled to -50 °C to terminate the progress of copolymerization. The actual monomer feed ratio was determined by ¹H NMR before the reaction. The conversion of the vinyl group was determined by ¹H NMR in CDCl₃ using the methylene group of ODA as an internal standard. The time-conversion study for the molecular feed ratio of ODA : HEAm = 9:1 could not be analyzed due to the overlap of ¹H peaks of vinyl groups in this feed ratio.

Evaluation of monomer reactivity ratios by Fineman-Ross plot

Monomer reactivity ratios, r_1 and r_2 (M_1 : HEAm and M_2 : ODA), were determined using a Fineman–Ross method¹, which used the following equation

$F(f-1)/f = r_1 (F^2/f) - r_2$

 $F = [M_1]_0/[M_2]_0$ where $[M_1]_0$ and $[M_2]_0$ are initial HEAm and ODA concentrations and $f = P[M_1]/P[M_2]$, where $P[M_1]$ and $P[M_2]$ are the compositions of HEAm and ODA in the copolymer. Similar to the time-conversion study, HEAm, ODA and AIBN (1 mol% relative to the total monomer amount) were added to a pressure-resistant glass tube (ACE GLASS). To this glass tube, toluene and DMF at a volume ratio of 4:1 was added in a glove box filled with N₂ to give a total solute concentration of 0.2 M. The actual feed monomer ratios were $[M_1]_0$: $[M_2]_0 = 3:7, 4:6, 5:5, 6:4, and 8:2,$ which were determined by ¹H NMR of the solution before the polymerization. The polymerization was carried out at 60°C and terminated at a total conversion of less than 6% except for the copolymerization with the monomer feed ratio of HEAm: ODA = 3: 7, which was 13%. The copolymer composition was calculated using the monomer conversion determined by ¹H NMR using methylene groups of ODA as an internal standard. F(f-1)/f was plotted against F^2/f . Then the data points are fitted to a straight line. The slope of the straight line gives r_1 and the intercept gives r_2 .

HEAm length calculation

The side chain length of HEAm was calculated by a molecular model created using Winmostar V11, which uses MOPAC to perform structure energy minimization.

Powder XRD measurement.

p(ODA50/HEAm50) powder was placed in a glass sample tube. The glass tube was put into an oven at 115 °C for 24 h. Then the copolymer powder was placed in a glass sample holder to measure XRD. The measurement condition is the same for out-of-plane XRD measurement.

Chemical Shift / ppm

Figure S1 ¹H-NMR spectrum of ODA

(a)

8.0

Chemical Shift / ppm

(c)

Chemical Shift / ppm

Figure S2 ¹H spectrum for p(ODA/HEAm). (a) p(ODA40/HEAm60), (b) p(ODA50/HEAm50), (c)

p(ODA60/HEAm40), (d) p(ODA70/HEAm30), (e) p(ODA90/HEAm10).

(b)

Chemical Shift / ppm

Figure S3 ¹³C-NMR spectrum for p(ODA/HEAm). (a) p(ODA40/HEAm60),

(b) p(ODA50/HEAm50), (c) p(ODA60/HEAm40), (d) p(ODA70/HEAm30), and

(e) p(ODA90/HEAm10).

Figure S4 Experimental geometry for (a) out-of-plane XRD, (b) in-plane XRD and (c) 2D GI-

XRD.²

Figure S5 Time-conversion curves for the free radical copolymerization of ODA and HEAm with the molar feed ratio of ODA : HEAm to (a) 4:6, (b) 5:5, (c) 6:4, and (d) 7:3.

Figure S6 Fineman-Ross plot for HEAm : ODA copolymerization. The straight line indicates linear

fit with correlation coefficient $R^2\,{=}\,0.968$

Figure S7 DSC curve for the third heating and cooling curve for (a) p(ODA40/HEAm60), (b) p(ODA50/HEAm50), (c) p(ODA60/HEAm40), (d) p(ODA70/HEAm30), and (e) p(ODA90/HEAm10).

Figure S8 2D-XRD image for (a) p(ODA40/HEAm60) and (b) p(ODA90/HEAm10). All the films were thermally

annealed for 24 h.

Figure S9 2D-XRD image and 1D intensity profile for out of plane for (a) p(ODA50/HEAm50), (b)

p(ODA60/HEAm40), (c) p(ODA70/HEAm30). All the films were thermally annealed at $\sim Tg + 10$ °C for 24 h. The 1D intensity profiles were extracted from the 2D images. The side peak appeared in *q* higher than the Bragg peak is originated from a diffraction from the reflected X-ray beam.²

Figure S10 (a)XRD patterns of p(ODA50/HEAm50) annealed at 160 °C at different times. (b) Expand graph of XRD pattern for 6 h annealed film. (c) Deconvolution of first-order Bragg peak in figure (b). Right table is the fitting results.

Figure S11 2D-XRD image (right) and 1D intensity profile for out of plane (left) for (a) p(ODA50/HEAm50), (b) p(ODA60/HEAm40), (c) p(ODA70/HEAm30). All the films were thermally annealed at 160 °C for 1.5 h. The 1D intensity profiles were extracted from the 2D images. The higher q value peak in p(ODA50/HEAm50) (q = 1.6 nm^{-1}) and p(ODA60/HEAm40) (q = 1.7 nm^{-1}) is attributed to remaining monolayer lamellar structure.

Figure S12 Fitting result for q_{hex} peak of copolymer lamellar film for (a) p(ODA70/HEAm30), (b) p(ODA60/HEAm40) (c) p(ODA50/HEAm50) annealed at 115 °C for 24 h and (d) p(ODA50/HEAm50) annealed at 160 °C for 6 h Upper graph in each spectrum is the residual for the fitting results.

Figure S13 Deconvolution of CH₂ asymmetric stretching (v_a) for p(ODA50/HEAm50) film annealed at (a) 115 °C for 24 h and (b) 160 °C for 6 h Upper graph in each spectrum is the residual for the fitting results and bottom table is the fitting results.

Figure S14 Length calculation of HEAm side chains. yellow: hydrogen, red: oxygen, green: carbon and blue: nitrogen

Figure S15 XRD pattern of p(ODA50/HEAm50) powder annealed at 115 °C for 24h. Strong diffraction at q = 15

nm⁻¹ is attributed to diffraction from hexagonally packed alkyl side chains.

Reference

(1) Young, R. J.; Lovell, P. A. Introduction to Polymers; Third Edition ed.; Tailor & Francis: Florida, 2011.

(2) Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K. W.; Chang, T.; Ree, M. Structural analysis of block copolymer thin films with grazing incidence small-angle X-ray scattering. *Macromolecules* **2005**, *38*, 4311-4323.