Supporting information

Order-order transitions in poly(N-octadecyl acrylamide-cohydroxyethyl acrylamide) statistical copolymer films

Mao Kikuchi', Nozomi Saitot, Mizuki, Ohke ${ }^{\dagger}$, Shusaku Nagano', Shotaro Nishitsuji ${ }^{\perp}$, and Jun Matsui ${ }^{\ddagger}$
${ }^{\dagger}$ Graduate School of Science and Engineering, ${ }^{\dagger}$ Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi,
Yamagata 990-8560, Japan
${ }^{\S}$ College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
${ }^{\perp}$ Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Japan

Contents

1. Experimental section P2-P3
2. NMR spectra P3-P10
3. Schematic for out-of-plane and in-plane XRD as well as 2D GI-XRD measurements P11
4. Time-conversion curves for the copolymerization P12
5. Fineman-Ross plot P13
6. DSC spectra P14
7. XRD patterns (1D and 2D) P15-P18
8. Fitting results for the in-plane XRD patterns and FT-IR spectra P19-P20
9. HEAm molecular model P21
10. Powder XRD pattern for $\mathrm{p}($ ODA50/HEAm50) P22
11. Reference P22

Experimental section

Time-conversion study.

Different feed ratios of HEAm, ODA, and $1 \mathrm{~mol} \%$ of AIBN relative to the total monomer amount were added to a pressure-resistant glass tube (ACE GLASS). To this glass tube, toluene and DMF at a volume ratio of 4:1 was added in a glove box filled with N_{2} and sealed with a rubber septum. The total concentration was kept constant at 0.2 M . The polymerization was carried out at $60^{\circ} \mathrm{C}$. A small amount of solution was taken by a syringe under Ar flow in predetermined intervals, and the solution was cooled to $-50^{\circ} \mathrm{C}$ to terminate the progress of copolymerization. The actual monomer feed ratio was determined by ${ }^{1} \mathrm{H}$ NMR before the reaction. The conversion of the vinyl group was determined by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3} using the methylene group of ODA as an internal standard. The time-conversion study for the molecular feed ratio of ODA : HEAm = 9:1 could not be analyzed due to the overlap of ${ }^{1} \mathrm{H}$ peaks of vinyl groups in this feed ratio.

Evaluation of monomer reactivity ratios by Fineman-Ross plot

Monomer reactivity ratios, r_{1} and $r_{2}\left(M_{1}:\right.$ HEAm and $M_{2}:$ ODA), were determined using a Fineman-Ross method ${ }^{1}$, which used the following equation

$$
F(f-1) / f=r_{1}\left(F^{2} / f\right)-r_{2}
$$

$F=\left[M_{1}\right]_{0} /\left[M_{2}\right]_{0}$ where $\left[M_{1}\right]_{0}$ and $\left[M_{2}\right]_{0}$ are initial HEAm and ODA concentrations and $f=\mathrm{P}\left[M_{1}\right] / \mathrm{P}\left[M_{2}\right]$, where $\mathrm{P}\left[M_{1}\right]$ and $\mathrm{P}\left[M_{2}\right]$ are the compositions of HEAm and ODA in the copolymer. Similar to the time-conversion study, HEAm, ODA and AIBN ($1 \mathrm{~mol} \%$ relative to the total monomer amount) were added to a pressure-resistant glass tube (ACE GLASS). To this glass tube, toluene and DMF at a volume ratio of $4: 1$ was added in a glove box filled with N_{2} to give a total solute concentration of 0.2 M . The actual feed monomer ratios were $\left[M_{1}\right]_{0}:\left[M_{2}\right]_{0}=3: 7,4: 6$, $5: 5,6: 4$, and $8: 2$, which were determined by ${ }^{1} \mathrm{H}$ NMR of the solution before the polymerization. The polymerization was carried out at $60^{\circ} \mathrm{C}$ and terminated at a total conversion of less than 6% except for the copolymerization with the monomer feed ratio of HEAm: ODA $=3: 7$, which was 13%. The copolymer composition was calculated using the monomer conversion determined by ${ }^{1} \mathrm{H}$ NMR using methylene groups of ODA as an internal standard. $F(f-1) / f$ was plotted against F^{2} / f. Then the data points are fitted to a straight line. The slope of the straight line gives r_{1} and the intercept gives r_{2}.

HEAm length calculation

The side chain length of HEAm was calculated by a molecular model created using Winmostar V11, which uses MOPAC to perform structure energy minimization.

Powder XRD measurement.

p (ODA50/HEAm50) powder was placed in a glass sample tube. The glass tube was put into an oven at $115^{\circ} \mathrm{C}$ for 24 h . Then the copolymer powder was placed in a glass sample holder to measure XRD. The measurement condition is the same for out-of-plane XRD measurement.

Figure S1 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of ODA
(a)

Chemical Shift / ppm
(b)

(c)

(d)

(e)

Figure S2 ${ }^{1} \mathrm{H}$ spectrum for $\mathrm{p}(O D A / H E A m)$. (a) $\mathrm{p}(O D A 40 / H E A m 60)$, (b) p(ODA50/HEAm50), (c) p(ODA60/HEAm40), (d) p(ODA70/HEAm30), (e) p(ODA90/HEAm10).
(a)

(b)

(c)

 $\begin{array}{lllllllllll}200.0 & 180.0 & 160.0 & 140.0 & 120.0 & 100.0 & 80.0 & 60.0 & 40.0 & 20.0 & 0\end{array}$

Chemical Shift / ppm
(d)

Chemical Shift / ppm
(e)

Figure S3 ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum for $\mathrm{p}(\mathrm{ODA} / \mathrm{HEAm})$. (a) $\mathrm{p}($ ODA40/HEAm60),
(b) p (ODA50/HEAm50), (c) p(ODA60/HEAm40), (d) p(ODA70/HEAm30), and (e) $\mathrm{p}($ ODA $90 / \mathrm{HEAm} 10)$.
(a)

(b)

(c)

Figure S4 Experimental geometry for (a) out-of-plane XRD, (b) in-plane XRD and (c) 2D GI-

XRD. ${ }^{2}$

Figure S5 Time-conversion curves for the free radical copolymerization of ODA and HEAm with the molar feed ratio of ODA : HEAm to (a) 4:6, (b) 5:5, (c) 6:4, and (d) 7:3.

Figure S6 Fineman-Ross plot for HEAm : ODA copolymerization. The straight line indicates linear
fit with correlation coefficient $\mathrm{R}^{2}=0.968$
(a)

(b)

Temperaure $/{ }^{\circ} \mathrm{C}$

Figure S7 DSC curve for the third heating and cooling curve for (a) p(ODA40/HEAm60), (b) p(ODA50/HEAm50), (c) p(ODA60/HEAm40), (d) p(ODA70/HEAm30), and (e) p(ODA90/HEAm10).
(a)

(b)

Figure S8 2D-XRD image for (a) p(ODA40/HEAm60) and (b) p(ODA90/HEAm10). All the films were thermally annealed for 24 h .
(a)

Figure S9 2D-XRD image and 1D intensity profile for out of plane for (a) p(ODA50/HEAm50), (b)
p (ODA60/HEAm40), (c) p(ODA70/HEAm30). All the films were thermally annealed at $\sim T g+10{ }^{\circ} \mathrm{C}$ for 24 h .

The 1D intensity profiles were extracted from the 2D images. The side peak appeared in q higher than the Bragg
peak is originated from a diffraction from the reflected X-ray beam. ${ }^{2}$
(a)

(b)

(c)

Peak position $/ \mathrm{nm}^{-1}$	Area $/ \%$
1.35 (segregated lamellae)	89.3
1.70 (mixed lamellae)	10.7

Figure S10 (a)XRD patterns of p(ODA50/HEAm50) annealed at $160^{\circ} \mathrm{C}$ at different times. (b) Expand graph of XRD pattern for 6 h annealed film. (c) Deconvolution of first-order Bragg peak in figure (b). Right table is the fitting results.
(a)

(b)

(c)

Figure S11 2D-XRD image (right) and 1D intensity profile for out of plane (left) for (a) p(ODA50/HEAm50), (b)
$\mathrm{p}\left(\right.$ ODA60/HEAm40), (c) $\mathrm{p}(\mathrm{ODA} 70 / \mathrm{HEAm30})$. All the films were thermally annealed at $160{ }^{\circ} \mathrm{C}$ for 1.5 h . The 1D
intensity profiles were extracted from the 2D images. The higher q value peak in $p($ ODA50/HEAm50) ($q=1.6$
$\left.\mathrm{nm}^{-1}\right)$ and $\mathrm{p}\left(\right.$ ODA60/HEAm40) $\left(\mathrm{q}=1.7 \mathrm{~nm}^{-1}\right)$ is attributed to remaining monolayer lamellar structure.

Figure S12 Fitting result for $q_{\text {hex }}$ peak of copolymer lamellar film for (a) p(ODA70/HEAm30), (b) p (ODA60/HEAm40) (c) p (ODA50/HEAm50) annealed at $115{ }^{\circ} \mathrm{C}$ for 24 h and (d) p (ODA50/HEAm50) annealed at $160^{\circ} \mathrm{C}$ for 6 h Upper graph in each spectrum is the residual for the fitting results.
(a)

(b)

Peak position $/ \mathrm{cm}^{-1}$	Area $/ \%$
2919.3 (trans)	74.4
2931.7 (gauche)	25.6

Figure S13 Deconvolution of CH_{2} asymmetric stretching (v_{a}) for $\mathrm{p}\left(\right.$ ODA50/HEAm50) film annealed at (a) $115{ }^{\circ} \mathrm{C}$ for 24 h and (b) $160{ }^{\circ} \mathrm{C}$ for 6 h Upper graph in each spectrum is the residual for the fitting results and bottom table is the fitting results.

Figure S14 Length calculation of HEAm side chains. yellow: hydrogen, red: oxygen, green: carbon and blue: nitrogen

Figure S15 XRD pattern of $\mathrm{p}\left(\right.$ ODA50/HEAm50) powder annealed at $115^{\circ} \mathrm{C}$ for 24 h . Strong diffraction at $\mathrm{q}=15$ nm^{-1} is attributed to diffraction from hexagonally packed alkyl side chains.

Reference

(1) Young, R. J.; Lovell, P. A. Introduction to Polymers; Third Edition ed.; Tailor \& Francis: Florida, 2011.
(2) Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K. W.; Chang, T.; Ree, M. Structural analysis of block copolymer thin films with grazing incidence small-angle X-ray scattering. Macromolecules 2005, 38, 4311-4323.

