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1 Surface tension fitting

1.1 Equation 14 and 15 - Molecules of single bead type

A parameter sweep varies the number of bonded beads N and their interaction parameter aij. Figure
S1 shows the relationship between the calculated surface tension and N for different aij values. For
each value of aij, a fit is obtained using equation

γ =
−1.9√
N

+ β

fitting to the value of β.
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Fig. S1: Relationship between the surface tension and N for different values of aij .

The relationship between fitted β and aij is shown in Fig. S2. First and second order polynomial
fits to β are shown, highlighting the improved fit when using a second order fit. The overall coefficient
of determination R2 value for the first order fit is R2 = 0.993566, while for the second order fit R2 =
0.999885.

1.2 Equation 22 - Molecules with two bead types

The coefficient values M , mi, and ci in Eq. 22 (main article) are obtained by fitting to raw data. This
raw data is obtained via a parameter sweep through different values of aCC , aDD and aCD. The quality
of this fit is demonstrated in Fig. S3, in which the value of surface tension (obtained via Eq. 12), is
plotted against the value obtained using Eq. 22.
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Fig. S2: Relationship between fitted β parameter and aij .
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Fig. S3: The relationship between the ‘fit’ value of γ (using Eq. 22 in the main article) and the ‘calculated’ value (using
Eq. 12 in the main article). Fit has R2 = 0.967053.

2 Density fitting

Once again, a parameter sweep varies the number of bonded beads N and their interaction parameter
aij. Figure S4 shows the relationship between the calculated density and N for different aij values. For
each value of aij, a fit is obtained using equation

ρ =
α

N
+ κ

fitting to the values of α and κ. The relationships between fitted α and κ with aij are shown in Fig.
S5. First order fits with aij produce Eq. 16 in the main article. The overall R2 value for the fit for
density against aii is R

2 = 0.997421.
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Fig. S4: Relationship between bead density and aij .
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Fig. S5: Relationship between fitted α and κ with interaction parameter aij . For α vs. aii fit has R2 = 0.936001, and
for κ vs. aii fit has R

2 = 0.998595.

3 Cross interaction fitting

The coefficient values xi in Eq. 21 (main article) are obtained by fitting to raw data. This raw data is
obtained via a parameter sweep through different values of aAA, aBB and aAB. The quality of this fit
is demonstrated in Fig. S6, in which the value of ln(γ∞

A ) (obtained via Eq. 20), is plotted against the
value obtained using Eq. 21.
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Fig. S6: The relationship between the ‘fit’ value of ln(γ∞
A ) (using Eq. 21 in the main article) and the ‘calculated’ value

from widom insertion (using Eq. 20 in the main article). Fit has R2 = 0.996770.

4 Surface tension and interface size

Fig. S7 shows the surface tension calculated as a function of the number of beads in the molecule
and the value of aii. We vary the size of the box, where one has dimensions 10rC × 10rC × 100rC
and is conducted using 10,000 beads. Another, larger box, has dimensions 22rC × 22rC × 100rC and
contains 100,000 beads. We show that the surface tension results between the two box sizes are virtually
identical, for molecules of various lengths and different aii values.
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Fig. S7: Relationship between the surface tension and the number of bonded beads, for different values of aii and interface
surface areas.

5 Surface tension and equilibrium bond length

Fig. S8 shows the surface tension calculated for a molecule of length N = 4, as a function of aii.
We vary the equilibrium bond length chosen, comparing l0 = 0.5 and l0 = 0.45. We show that the
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surface tension results between the two are virtually identical, meaning that the choice of bond length
is critically important to the parametrisation scheme.
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Fig. S8: Relationship between surface tension (for a molecule of length N = 4) and interaction parameter aii when the
equilibrium bond length l0 is varied.

6 Mixtures in larger simulation boxes

As discussed in the main article, we also tested increasing the bulk size for aqueous mixtures of polyethy-
lene glycol to investigate the impact this has on the surface tension calculated. This was motivated by
the preference for solute molecules to gather at the interface, influencing the bulk concentration.

Fig. S9 shows the surface tension calculated for two different box sizes. One is the domain size
which is presented in the main article and is conducted in a simulation box with 22rC × 22rC × 100rC
using n = 100, 000 simulation beads. For comparison, we also show a larger box size, which has
22rC × 22rC × 300rC using n = 300, 000 simulation beads. We observe that the results from the larger
domain size are slightly closer to the experimental results, likely because the bulk concentration in this
case is closer to the experimental bulk concentration. However, the difference is negligible, and the
results are fairly similar.
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Fig. S9: Surface tension of aqueous diethylene glycol mixtures as a function of concentration, for two different box sizes.
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