

Figure S2: Amplitude a(q) obtained from fitting data to Eq. $\mathbf{5}$ with Γ_{zG} as a shared parameter.

Figure S3: Determination of vesicle R_{H} using DLS. (Top) R_{H} of DoPhPC:DoPhPE (9:1) vesicles as a function of mol\% squalane. Data from two sets of samples are shown in open squares (set 1) and closed squares (set 2).
The two sets differ mostly in the time frame the DLS measures were taken. Set1 was measured after HP treatment. Set 2 was measured directly following extrusion. Each sample was measured three times and the average value reported. Error bars indicate the standard deviation in vesicle size, not the standard deviation of the triplicate measurements. Dashed line indicates a linear fit of the values from both data sets. (Bottom) Size distribution of vesicle R_{H} for samples from two sets of measurements. The dashed lines indicate the data from set 1 and the solid lines indicate the data from set 2 . Measurements were made of DoPhPC:DoPhPE (9:1) containing $0 \mathrm{~mol} \%$ (red), $1 \mathrm{~mol} \%$ (yellow), $2.5 \mathrm{~mol} \%$ (green) and $5 \mathrm{~mol} \%$ (blue) squalane.

Table S1: Average \pm stdev of values measured by DLS in technical triplicate. Measurements were made with two different sets of samples. Set 1 was measured at $25^{\circ} \mathrm{C}$ and Set 2 was measured at $20^{\circ} \mathrm{C}$. DLS was used to calculate R_{H}, Polydispersity Index (PDI), and standard deviation of the R_{H} values.

Sample	$\mathrm{R}_{\mathrm{H}}(\mathrm{nm})$	PDI	Stdev (nm)
0\%sq 25C (1)	58.38 ± 0.51	0.116 ± 0.013	19.84 ± 1.22
5\%sq 25C (1)	150.95 ± 3.35	0.445 ± 0.048	100.49 ± 3.42
0\%sq 20C (2)	71.96 ± 0.85	0.178 ± 0.013	30.34 ± 0.72
1\%sq 20C (2)	77.29 ± 0.86	0.157 ± 0.013	30.64 ± 1.04
2.5% sq 20C (2)	79.09 ± 0.39	0.159 ± 0.020	31.46 ± 1.91
$5 \% s q$ 20C (2)	101.6 ± 0.53	0.234 ± 0.014	49.10 ± 1.69

