Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2023

Supplementary Materials

Magnetic field enabled *in-situ* control over structure and dynamics of colloids interacting via SALR potentials

Hashir Gauri¹, Zachary Sherman², Ahmed Al Harraq¹, Thomas M. Truskett² and Bhuvnesh Bharti^{1,*}

¹Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 ²McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712

* Corresponding author's email address: <u>bbharti@lsu.edu</u>

Supplementary Figure 1. Particle size distribution of polystyrene microspheres computed by image analysis. The distribution yields a mean value of $R = 1 \mu m$.

Supplementary Figure 2. Particle size distribution of iron oxide nanoparticles (EMG 705, Ferrotec) computed by image analysis using captured Transmission electron micrographs. The distribution yields a mean value of a = 9 nm

Supplementary Figure 3. The calibration curve for the Helmholtz coil is wired to a direct current (DC) power supply to generate a uniform out-of-plane magnetic field. Magnetic field strength is obtained using a handheld magnetometer (AlphaLab Inc. GM2).

Supplementary Figure 4. Magnetic properties of the MNPs at the stock concentration (2.3 vol %) are measured using Superconducting Quantum Interference Device (SQUID) magnetometry. (A) The magnetization curve displays and saturation at approximately 50,000 A/m and no hysteresis. (B) A linear fit for MNPs in the range of field strength used (0 - 10 kA/m).