Nucleation-enhanced condensation and fast shedding

on self-lubricated silicone organogels

Supplementary Information

Nicolas Lavielle*, Daniel Beysens and Anne Mongruel

Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI, PSL Research University, Sorbonne Université, Sorbonne Paris Cité, 75005 Paris, France

Corresponding author: nicolas.lavielle@espci.fr

Supplementary note: Calculation of the amplitude constants A and E.

Inspired by references [40] and [42], the calculation of the amplitude constants *A* (condensation) and *E* (evaporation) can be expressed as follows:

$$A = E = \frac{4D(c_{\infty} - c_s)f(\Theta)}{3\rho_w sin\Theta \ G(\Theta)}$$

With:

$$f(\Theta) = \frac{1}{2}(0.00008957 + 0.6333\Theta + 0.116\Theta^2 - 0.08878\Theta^3 + 0.01033\Theta^4)$$

and

$$G(\Theta) = \frac{2 - 3\cos\Theta + \cos\Theta^3}{3\sin\Theta^3}$$

D being the diffusion coefficient of water; c_{∞}, c_s the concentration of water monomers far and on the drop surface, respectively; ρ_w , the water density and Θ , the dynamic contact angle equal to Θ_a (advancing contact angle) in the case of the condensation and to Θ_r (receding contact angle) in the case of the evaporation.

As condensation (/ evaporation) experiments on iPDMS, PDMS and Si were performed in the same conditions, the only varying parameter is the geometrical argument (i.e. $f(\Theta)$, $G(\Theta)$ and $sin\Theta$) and the respective ratios of A and E were calculated and compared to the experimental values:

	PDMS	iPDMS	Si		theo.	exp.
<i>O</i> a (°)	120	105	75	A _{iPDMS} /A _{PDMS}	1.4	3.8
Ø r (°)	60	105	55	A _{iPDMS} /A _{Si}	0.6	1.2
A _{theo.} (μm²/s)	0.41	0.57	0.97	E _{iPDMS} /E _{PDMS}	0.5	0.5
<i>E_{theo.}</i> (μm ² /s)	1.26	0.57	1.39	E _{iPDMS} /E _{si}	0.4	0.2

Table 1: Advancing / receding contact angles, theoretical amplitude constants (A for condensation, *E* for evaporation) and comparison between theoretical and experimental amplitude constants ratios for PDMS, iPDMS and Si.

Supplementary Figure S1: Droplet growth on PDMS horizontal surfaces: Typical radius evolution of a single droplet on PDMS with time (coalescence events are indicated by red arrows).

Material	t _{evap} (s)	<i>Ε</i> (μm²/s)	
iPDMS	1100	324	
PDMS	950	625	
Si	530	1369	

Supplementary Figure S2: Evaporation of a deposited droplet on iPDMS, PDMS and Si surfaces: a) Radius evolution of 0.5μ L water droplet as function of time (t_0 -t, with t_0 the time of droplet disappearance). b) Time needed for the water droplet to completely evaporate and related values of *E*.

Supplementary Figure S3: Normalized radius distribution of condensed water droplets on horizontal surfaces: Evolution of the number of droplets, *N*, of radius *r*, for (a) PDMS and (b) iPDMS with 5.4 μ m oil thickness. Normalized size distribution for PDMS and iPDMS with various oil thicknesses at (c) 500 s and (d) 1000 s. (Step of 20 μ m).

@1000s

Supplementary Figure S4: **Microscope images for PDMS, iPDMS (0.25, 0.5 and 1.4um)**: Corresponding threshold images at 1000 s of condensation. The periphery of each droplet is well defined and only a few (2 or 3) drops display a visible wetting ridge for iPDMS 1.4um.

Supplementary Figure S5: Microscope image for iPDMS 5.4um at 1000s of condensation: Comparison of the corresponding image analysis with low, medium and high threshold for removing the influence of the wetting ridge in the determination of the drop volumes.