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Section S.1. Details of the CLP model and Simulations

The simulations presented in the main manuscript are run in an NVT ensemble with a constant 
reduced temperature T* = 3.0, with the following CG model parameters. 

Table S1. Bond potential parameters for the CG CLP Model 

Type Force constant, k ( )𝜀/𝜎2
Equilibrium bond length, 𝑟0(𝜎)

BB-BB 1000 0.5
BB-HB 1000 0.37

Table S2. Angle potential parameters for the CG CLP Model

Type Force constant, k ( )𝜀/𝑟𝑎𝑑2
Equilibrium angle, 𝜃0(𝑟𝑎𝑑)

BB-BB-BB 20 π
HB-BB-BB 300 π/2

Table S3. Dihedral angle potential parameters for the CG CLP Model

Type Force constant, k ( )𝜀 Equilibrium dihedral angle, 
𝜑0(𝑟𝑎𝑑)

GH-GB-PB-PH 15 -2π/3
PH-PB-GB-GH 15 2π/3

Table S4. Nonbonded potential parameters for the CG CLP Model under good solvent 
conditions 

Type Potential 
Type

 ( )𝜖𝑖𝑗 𝜀 𝜎𝑖𝑗(𝜎)

BB-BB WCA 1.0 1.00
BB-HB WCA 1.0 0.65

HB-HB (D-A) LJ 50.4 0.30
HB-HB(D-D) or (A-A) WCA 1.0 0.70

Table S5. Nonbonded Potential Parameters for the CG CLP Model under poor solvent 
conditions

Type Potential 
Type

 ( )𝜖𝑖𝑗 𝜀 𝜎𝑖𝑗(𝜎)

BB-BB LJ 𝜀𝐵𝐵 1.00
BB-HB WCA 1.0 0.65

HB-HB (D-A) LJ 50.4 0.30
HB-HB(D-D) or (A-A) WCA 1.0 0.70
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Section S.2:  Details for Analysis Implementation

a. Fractal Dimension

The box-counting method of approximating fractal dimension computes the number of cubes with 

side length  that are needed to cover the entirety of the voxelated shape. The fractal dimension is 𝜀

then computed as:

                                                                               (S1)
𝐷𝑓 =‒ lim

𝜀→0

log (𝑁(𝜀))
log (𝜀)

where is the fractal dimension,  is the size of the side length of the spanning cubes (in number 𝐷𝑓 𝜀

of voxels), and  is the number of cubes of side length  needed to cover the voxelated imaged. 𝑁(𝜀) 𝜀

We show instances of this calculation for one trial each for several simulation conditions in Figure 

S1. This box counting was performed using the box-counting method in PoresPy, with 15 bins 

used for the calculation.1

As the cube size increases to lengths near the simulation box size, frequently  remains 𝑁(𝜀)

constant over a range of  (that is, the number of cubes required to cover our voxelated image of 𝜀

the network remains the same for different cube sizes over that range). To avoid biasing our 

calculated fractal dimension as a result of these plateaus, we use only the first half of the data to 

calculate the fractal dimension (the smallest cube sizes), and note that the linear fit over this half 

of the data generally describes the trend of the data at larger cube sizes moderately well.
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Figure S1: Results of the box counting method used to calculate the fractal dimension for one trial 
of each simulation condition. Filled circles with dotted lines show the box counting data, as 
described above, while solid lines show the linear fit to the data. The top row plots correspond to 
results from one sticky-ended CLP helices while the bottom row plots correspond to two sticky-
ended CLP helices; each column corresponds to the value of CLP concentration as indicated. In 
each plot, the results for each solvent quality are depicted with a dark red curve (  = 0.3 ; worst 𝜀𝐵𝐵 𝜀

solvent), light red curve (  = 0.2 ), cyan curve (  = 0.1 ), dark blue (WCA interaction; good 𝜀𝐵𝐵 𝜀 𝜀𝐵𝐵 𝜀
solvent).

b. Lacunarity

This method computes the lacunarity for cubes containing different numbers of voxels. The voxel 

representation of the simulation is partitioned evenly into cubes of the same size, and the number 

of voxels valued 1 in each cube is counted. These counts are then represented as a probability 

distribution over all cubes. The mean and variance of this distribution are calculated, and the 

lacunarity at that cube size is computed using:

                                                                               (S2)
𝜆(𝜀) =

𝜎2
𝜀

𝜇2
𝜀
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where λ is the lacunarity, ε is the number of voxels along one edge of the cube, and  and  are  𝜇𝜀 𝜎𝜀

the mean and standard deviation of the distribution of counts across all cubes.

To create a voxel representation that can be partitioned into cubes of many different sizes, 

we truncate the voxel representation to be of size 100x100x100 (from 110x110x110), discarding 

extra voxels. We then compute the lacunarity for all cube sizes that are even divisors of 100 (1, 2, 

4, 5, 10, 20, 25, 50, 100). We choose to truncate the data rather than change the voxel size to ensure 

our analysis is focused on the overall structure, and we do not get additional artifacts from the 

spherical shape of the simulation beads (if we choose a smaller voxel size) or a poor approximation 

of the actual structure (if we choose a larger voxel size) 

We note that the lacunarity values at  (a single voxel) vary as we change the 𝑙𝑜𝑔⁡(𝜀) = 0

solvent quality at a given concentration, while in theory, the values should depend only on the 

number of occupied voxels that have a value of 1, which would imply dependence only on the 

concentration and not on how the CLP helices interact. This fact would be true if the voxels are 

infinitely small. However, using finite sized voxels, the approximation of structure with the voxel 

representation leads to discrepancies. Since we value a voxel at 1 it contains any part of a bead, 

we are consistently overestimating the volume fraction when doing this calculation. This 

overestimation will generally be higher for networks with smaller diameters and higher branching, 

since finite-sized voxels will resolve these finer features worse than they would coarser features. 

We thus linearly scale all lacunarity curves for a given concentration to the range between 1 and 

the maximum  (across that concentration) for a more appropriate comparison. We note that 𝜆(1)

the choice of the maximum  is somewhat arbitrary, and the most important consideration is 𝜆(1)

that the curves are scaled to the same value at  to ensure the lacunarity curves represent the 𝜀 = 1
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physical reality of the system rather than artifacts due to voxelization. We show the unscaled 

version of the lacunarity curves in Figure 8 of the main text in Figure S2.

Figure S2: Unnormalized lacunarity curves for the same data shown in Figure 8 of the main body.

c. Graph-based Analysis of Strand Lengths and Diameters

Implementation Details

Here, we include the specific details for the implementation our graph-based analysis.

The NetworkX Python package allows the user to assign attributes to nodes and edges, which we 

use to track the positions of nodes.2 We use this feature to keep track of the voxels and simulation 

beads associated with each node and edge in the voxel graph as we modify the graph. The steps 

we take to generate the graph for analysis, and attributes we store in each node and edge at each 

step are as follows:

(i) Initial Voxel Graph
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Node and Edge Meanings:

Each node represents a voxel in the skeleton, and each edge represents connects adjacent voxels. 

Node Attributes: 

 x,y,z position of the node

 A list of the nearest original voxels (before the skeletonization)

Edge Attributes:

 A weight of 1, to be used for simplifying the graph over the next two steps

(ii) Simplified Voxel Graph

In the previous step, we have a node at every voxel along a network strand. However, we would 

like our graph representation to have node representing network junctions and edges representing 

network strands. To accomplish this, we iteratively remove all nodes with degree 2 (nodes with 2 

attached edges are along a strand in the network), connecting their neighbors with an edge. For 

each node removal, we sum the edge attribute weight of the two connected edges to keep track a 

rough estimate of how far apart the nodes are. We also add another attribute to each edge to keep 

track of the original voxels attributed to each edge, and add the list of original voxels of each 

deleted node to its associated edge.

Node and Edge Meanings:

Each node represents a junction in the skeleton (voxels from the initial voxel graph with 1 or 3+ 

neighbors), and each edge represents the strand along the skeleton connecting the nodes in the 

initial voxel graph. 

Node Attributes: 
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 x,y,z position of the node

 A list of the nearest original voxels (before the skeletonization)

Edge Attributes:

 A weight greater than or equal to 1, to be used for simplifying the during the next step

 A list of the nearest original voxels (before the skeletonization) of all nodes deleted along 

this edge.

(iii) Simplified Voxel Graph with Removal of “Junk” Nodes

After simplifying the graph in step (ii), the skeletonization process can result in many junctions 

clustered together around the true junction. We show some examples of these “junk” nodes in 

Figure S3. To remove these “junk” nodes, we identify clusters of adjacent nodes from step (ii) 

that have edge weights of 1, corresponding to adjacent voxels with 3 or more neighbors. For each 

cluster, we remove all nodes in the cluster, and add a new node located at the average position of 

all the nodes that were removed in that cluster. The original voxel list of each of the removed nodes 

is added to the new node. After resolving all the “junk” nodes, we once again simplify the graph 

as described in step (ii)

Node and Edge Meanings:

Same as step (ii)

Node Attributes: 

 x,y,z position of the node

 A list of the nearest original voxels (before the skeletonization)

Edge Attributes:
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 A weight greater than or equal to 1, which will not be used any further

 A list of the nearest original voxels (before the skeletonization) of all nodes deleted along 

this edge 

Figure S3: Example of the skeletonized voxel representation of the simulation, showing some 
instances of “junk” nodes (circled in red), where the skeletonization process results in clumps of 
junctions surrounding the true junction.

(iv) Removal of Extraneous CLP Helices and periodic boundary artifacts

While it may be possible to include periodic boundaries into the graph representation of the 

simulation, it is not included in this implementation. This can result in small, isolated artifacts near 

the edge of the box that we would like to avoid performing analysis on. To accomplish this, we 

first remove any node with a position within two voxels of the edge of the voxelated image. We 

then finalize the graph for analysis by taking the component of the resulting graph with the most 

nodes. 

Node and Edge Meanings:



10

Same as step (ii) or (iii)

Node Attributes: 

Same as step (iii)

Edge Attributes:

Same as step (iii)

(v) Bead Graph

We construct another graph based on the simulation beads themselves, where each simulation bead 

is represented as a node, and beads within a cutoff distance of 2σ are connected by edges. We use 

only OB beads for the construction of both graphs to reduce the computational intensity of the 

analysis. Each node represents a simulation bead, and each edge connects beads within the cutoff 

distance. In each edge, we store the distance between the connected nodes, to be used for the length 

calculation.

(vi) Length Calculation

We compute the length of each edge in the analysis graph first, since we also use the length 

calculation to verify that the edge is not an artifact of the voxelization and skeletonization process. 

To compute the length of each edge in the graph from Step 4, we identify all simulation beads 

associated with the edge and its two nodes using the list of original voxels stored in their respective 

attributes. We use Dijkstra’s algorithm to compute the shortest distance (weighted by the edge 

weights of the distances between simulation beads) along the graph from the beads closest in 

position to each node in the voxel graph. Some instances occur where the edge is an artifact of the 

voxelization and skeletonization, and no path exists between the two nodes. We show two such 
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examples in Figure S4.  In this case, we remove the edge from the graph so that it is not used in 

future analysis.

Figure S4: Examples of edges in the graph that have no connecting path. Bead locations nearest 

to the identified node are highlighted in red. The blue points show all simulation beads associated 

with the strand, and orange edges connect all beads that are within a distance of 2σ of one another. 

(vii) Diameter Calculation

For each edge on the voxel graph, we get the associated voxels from the graph in Step 1. We only 

consider edges with more than five of these voxels for the diameter calculation, with smaller edges 

having a higher tendency to give unreliable results. For the diameter calculation, we then take a 

five-voxel segment of the edge and calculate the direction vector from the positions of the first and 

last voxels in this segment. We compute the distance from each simulation bead associated with 

this segment to that vector, and report the diameter of that segment as double the maximum 

distance plus one (to account for the radii of the simulation beads themselves). This process is 

repeated for each five-voxel-long segment along the edge, and the diameter for the edges is 

reported as the mean of all diameter segments.
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d. Pore Size Distribution

For our analysis, we sample 1000 points per simulation snapshot analyzed to compute the pore size 

distribution. We have sampled also tried sampling different numbers of coordinates for each snapshot for a 

few different systems and found larger variations when we sample fewer coordinates (Figure S5, right). 

However, even with sufficiently fewer coordinates (100) sampled per configuration, the distributions mean 

distributions are very similar (Figure S5, left). Sampling 1000 coordinates shows only minor differences 

to sampling 1500 coordinates, so we proceeded with using 1000 as the number of sampled coordinates. 

Figure S5: Plots of the pore size distribution for networks of CLP triple helices using a different 
number of sampled coordinates to compute the pore size distribution (all other details are identical 
to those described in Figure 8 of the main paper). The lines indicate the mean of three simulation 
trials, while the shaded region represents the standard deviation across the three simulation trials. 
The data shown is for 20mM 1 sticky-ended CLP triple helix networks with εBB=0 (WCA 
interactions). Left: data is shown as computed to show a direct comparison of the means, Right: 
Data for 300, 500, 1000, and 1500 are shifted downward by 0.01, 0.02, 0.03, and 0.04 respectively 
for visual clarity of the error bars. 
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Section S.3: Additional Visualization of Simulations

         

Figure S6: Examples of the strand length calculation. Here, we show the entire simulation box 
colored by the values of strand length (L) calculated by the graph analysis method. Images are 
from a snapshot of a network assembly in a 20mM simulation of one sticky-ended CLP helices 
with (a) and  (b) at the end of the 10 million timestep production run. Gray beads 𝜀𝐵𝐵 = 0 𝜀𝐵𝐵 = 0.2

are not included in the analysis as a result of removing nodes near the boundary of the box and 
removing edges during the strand length calculation as described in the implementation details in 
Section 1. 

           

Figure S7: Examples of the strand diameter calculation. Here, we show the entire simulation box 
colored by the values of strand diameter calculated by the graph analysis method. Images are from 
a snapshot of a network assembly in a 20mM simulation of one sticky-ended CLP helices with 

(a) and  (b) at the end of the 10 million timestep production run. Gray beads are 𝜀𝐵𝐵 = 0 𝜀𝐵𝐵 = 0.2

not included in the analysis as a result of removing nodes near the boundary of the box and 
removing edges during the strand length calculation as described in the implementation details in 
Section 1.

L<5
5<L<10

10<L<15
15<L<20
20<L<25
25<L<30

30<L
Not analyzed

a) b)

3<D<4
4<D<5
5<D<6
6<D<7
7<D<8
8<D<9

9<D
Not analyzed

a) b)
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Section S.4: Fibril Assembly at Dilute CLP helix concentrations

Figure S8. Simulation snapshots of two sticky-ended coarse-grained CLP triple helices and 
weighted probability distributions of sizes of clusters of one and two sticky-ended heterotrimeric 
CLP triple helices measured in terms of the number of helices per cluster, Nhelix,cluster with 
decreasing solvent quality at a CLP concentration of 1 mM. Snapshots for each solvent quality are 
depicted with a red curve (  = 0.3 ; worst solvent), blue curve (  = 0.1 ), and black curve 𝜀𝐵𝐵 𝜀 𝜀𝐵𝐵 𝜀
(WCA interaction; good solvent). Weighted distributions of number of helices per cluster are 
shown for c) one sticky-ended and d) two sticky-ended CLP triple helices.
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Section S.5: Figures Contrasting Results from One vs Two sticky-ended CLPs

In this section, we replot the data from the main body of the text for easier comparison between 

the one and two sticky-ended CLP data. The curves and error bars have the same meaning as those 

described in the main text, and we have only changed the colors and order in which the data is 

plotted. 

Figure S9: Distribution of strand lengths, L, observed for the networks formed from CLP triple 
helices at 15, 20, and 25mM. Each row of plots corresponds to a solvent quality, with the best 
solvent quality in the top row and worst solvent quality in the bottom row; each column 
corresponds to the value of CLP concentration as indicated. In each plot, the results for one and 
two sticky-ended CLP helices are depicted with a black and red curve, respectively. For each 
simulation, we compute the mean length distribution over ten snapshots collected every one 
million timesteps for the final 10 million timesteps of the simulation. Error bars represent the 
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standard deviation of these means across three independent trials as described in the methods 
section. 

Figure S10: Distribution of strand diameters, D, observed for the networks formed from CLP 
triple helices at 15, 20, and 25mM. Each row of plots corresponds to a solvent quality, with the 
best solvent quality in the top row and worst solvent quality in the bottom row; each column 
corresponds to the value of CLP concentration as indicated. In each plot, the results for one and 
two sticky-ended CLP helices are depicted with a black and red curve, respectively. For each 
simulation, we compute the mean diameter distribution over ten snapshots collected every one 
million timesteps for the final 10 million timesteps of the simulation. Error bars represent the 
standard deviation of these means across three independent trials as described in the methods 
section. 
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Figure S11: Distribution of pore sizes, ξ, observed for the networks formed from CLP triple 
helices at 15, 20, and 25mM. Each row of plots corresponds to a solvent quality, with the best 
solvent quality in the top row and worst solvent quality in the bottom row; each column 
corresponds to the value of CLP concentration as indicated. In each plot, the results for one and 
two sticky-ended CLP helices are depicted with a black and red curve, respectively. For each 
simulation, we compute the mean pore size distribution over ten snapshots collected every one 
million timesteps for the final 10 million timesteps of the simulation. Error bars represent the 
standard deviation of these means across three independent trials as described in the methods 
section. 
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Figure S12:  The fractal dimension for each CLP concentration and solvent quality. For each 
simulation, we compute the mean fractal dimension over ten snapshots collected every one million 
timesteps for the final 10 million timesteps of the simulation. Error bars represent the standard 
deviation of these means across three independent trials as described in the methods section. Black 
data points correspond to networks assembled from one sticky-ended CLP helices, and red data 
points correspond to networks assembled from two sticky-ended CLP helices
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Figure S13: Lacunarity curves (normalized as described in SI Section S.1) observed for the 
networks formed from CLP triple helices at 15, 20, and 25mM. Each row of plots corresponds to 
a solvent quality, with the best solvent quality in the top row and worst solvent quality in the 
bottom row; each column corresponds to the value of CLP concentration as indicated. In each plot, 
the results for one and two sticky-ended CLP helices are depicted with a black and red curve, 
respectively. For each simulation, we compute the lacunarity curve over ten snapshots collected 
every one million timesteps for the final 10 million timesteps of the simulation. Error bars represent 
the standard deviation of these means across three independent trials as described in the methods 
section. 

Maximum Diameter

Competing enthalpic and entropic contributions for self-assembly can lead to size-limiting mechanisms in 

the form of a maximum fibril diameter that occurs as the loss in entropy of adding additional chains to a 
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fibril balances the gain in enthalpy that occurs. This phenomenon has been shown in the study of Douglas 

and coworkers for semiflexible chains.3 To test if that happens in our system of CLP triple helices, in Figure 

S14, we plot the mean diameter of the network strands in our simulations as a function of solvent quality. 

We do not see the mean diameter plateauing within the range of  explored in this study. Therefore, we 𝜀𝐵𝐵

do not see any evidence of a size-limiting mechanism in CLP network strands irrespective of the backbone 

interaction strength.

Figure S14: Plots of the mean diameter of CLP network strands as a function of solvent quality 
for our CLP networks. The lines indicate the mean, and the error bars indicate the standard 
deviation, of three simulation trials. Data is plotted in black for one sticky-ended CLP triple 
helices, and red for two sticky-ended CLP triple helices. The line style indicates the CLP 
concentration: dotted is 15mM, dashed is 20mM, and solid is 25mM. All other details are 
identical to those described in Figure 7 of the main paper. 
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