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I. BAND STRUCTURES FOR VARIOUS STATES

To obtain the full band structure, the dynamical matrix and eigenvalues are calculated along

the~k path M = π/L(1,1/
√

3)→ ΓΓΓ = π/L(0,0)→ K = π/L(1/3,1/
√

3)→M = π/L(1,1/
√

3).

L =
√

N is the box size of the system.
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Fig. S1. Band structure for the pure solid state at N = 100, p0 = 3.75,σ = 0,KA = 1. Increasing cell

perimeter elasticity KP = 10 does not induce bandgaps.
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Fig. S2. Band structure for the pure solid state N = 100, p0 = 3.75,σ= 0.1,KA = 1. Increasing cell perimeter

elasticity KP = 10 and introducing heterogeneity σ = 0.1 do not induce bandgaps.
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Fig. S3. Colormap of the transmission coefficient T at N = 100,Nc = 10, p0 = 3.815,σ = 0.1,KP = 5,KA =

1. To reduce the boundary effects, we make Nc = 10 copies of the original configuration in the x direction

and implement the external sinusoidal perturbation in the (a) transverse and (b) longitude directions. Both

of the two colormaps show valleys of T that coincide with the bandgaps indicated by the density of states

and band structure in the main text.
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II. DYNAMICAL MATRIX

Energy of a general system E = T +U , which consists of kinetic energy T and potential energy

U . In the harmonic approximation(small oscillation), Taylor expansion of the potential energy

U =U0 +∑
iαµ

Hµ
iα +

1
2 ∑

iαµ
∑
jβν

Hµ,ν
iα, jβrµ

iαrν

jβ + · · · (1)

H is the Hessian matrix given by the second derivative of the energy with respect to vertex posi-

tions

Hµ,ν
iα, jβ =

∂2U
∂Rµ

iα∂Rν

jβ
. (2)

where Rµ
iα is the position of atom α in unit cell i and µ = x,y are cartesian indices. Hµ

iα = ∂U
∂Rµ

iα
near

the equilibrium position is 0.

Harmonic approximation

E =
1
2

µ

∑
iα

Mṙµ
iαṙµ

iα +
1
2 ∑

iαµ
∑
jβν

Hµ,ν
iα, jβrµ

iαrν

jβ (3)

The equation of motion of the system is

Mαr̈µ
iα =− ∂E

∂Rµ
iα

=−∑
jβν

Hµ,ν
iα, jβrν

jβ (4)

We can assume periodic solutions get the eigenvalue equations

ω
2rµ

α(~k) = ∑
βν

Dµ,ν
α,β(

~k)rν

β
(~k) (5)

Then the dynamical matrix is geven by

Dµ,ν
α,β(

~k) =
1√

MαMβ

∑
j

Hµ,ν
iα, jβ exp

[
− i~k · (~Ri−~R j)

]
(6)

For an amorphous structure, to calculate the dynamical matrix, the whole system is treated

as a super unit cell containing multiple vertices. RRRα
i denotes the position of the unit cell α in

which the ith vertex is located. We first take vertex i which is wrapped into the box, then find all

its neighboring vertices under periodic boundary condition. In this case, the neighbors might be

located outside the initial box. We determine its contribution to the Fourier factor by considering

its relative position with respect to the initial box. For example, if the vertex is in the left imaging

box, a −Lx translation along x axis, the Fourier factor is exp(−ikxLx). If the vertex is in the top

right imaging box which is a translation of Lx in x and Ly in y directions, the Fourier factor would

be exp(ikxLx + ikyLy). Lx, Ly are the box sizes of our system in x, y directions, respectively. We

use a square box in the simulations Lx = Ly = L =
√

N. N is the number of cells of the tissue.
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