Soft Matter

SUPPORTING INFORMATION

pH response of sequence-controlled polyampholyte brushes

Xin Yuan,^a Harold W. Hatch,^{*b} Jacinta C. Conrad,^{*a} Amanda B. Marciel^{*c} and Jeremy C. Palmer^{*a}

^a Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204

^b Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320

 $^{^{\}rm c}$ Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005

^{*} E-mails: harold.hatch@nist.gov, jcconrad@uh.edu, am152@rice.edu, jc-palmer@uh.edu

Fig. S1 The average degree of ionization $\langle \alpha_i \rangle$ as a function of monomer index *i* for brushes with different monomer sequences and grafting densities.

Fig. S2 The effective disassociation constants $pK_{A,i}^{\text{eff}}$ as a function of monomer index *i* for brushes with different monomer sequences and grafting densities. For acidic monomers, $pK_{A,i}^{\text{acid},\text{eff}} = pH^{\text{res}} + \log_{10} \frac{1 - \langle \alpha_i \rangle}{\langle \alpha_i \rangle}$, whereas $pK_{A,i}^{\text{base},\text{eff}} = pH^{\text{res}} - \log_{10} \frac{1 - \langle \alpha_i \rangle}{\langle \alpha_i \rangle}$ for basic monomers. The dotted lines show the intrinsic disassociation constant values of $pK_A^{\text{acid}} = 4.4$ and $pK_A^{\text{base}} = 10.4$

Fig. S3 The free ion coordination number (number of free solution ions near each monomer) $CN_{ion,i}$ as a function of monomer index *i* for brushes with different monomer sequences and grafting densities. The coordination number was calculated using a cutoff radius of 1.5σ .

Fig. S4 The free ion number density $\rho_{ion}(z)$ as a function of the distance from the grafting surface z for brushes with different monomer sequences and grafting densities.

Fig. S5 The monomer number density $\rho_m(z)$ as a function of the distance from the grafting surface z for brushes with different monomer sequences and grafting densities.

Fig. S6 Root-mean-squared chain end-to-end distance $\langle R_e^2 \rangle^{1/2}$ for brushes with different monomer sequences and grafting densities of $\rho = (a) 0.01$, (b) 0.04, and (c) 0.09 σ^{-2} . The dashed line shows the reference value for a neutral brush with the same grafting density. Where not visible, uncertainties are smaller than symbol size.

Fig. S7 Radius of gyration $\langle R_g^2 \rangle^{1/2}$ for brushes with different monomer sequences and grafting densities of $\rho = (a) 0.01$, (b) 0.04, and (c) 0.09 σ^{-2} . The dashed line shows the reference value for a neutral brush with the same grafting density. Where not visible, uncertainties are smaller than symbol size.

1–9

8|

Fig. S8 The average intermonomer distance $\langle R_{ij} \rangle$ as a function of sequence separation in the chain |j - i| for brushes with different monomer sequences and grafting densities. Non-monotonic behavior is observed near neutral pH^{res} for PABs with block sizes of 6, 12, and 24 ((K₆E₆)₄, (K₁₂E₁₂)₂, and K₂₄E₂₄, respectively), indicating that the chains partially fold back on themselves due to attractive electrostatic interactions between oppositely charged blocks.