Electronic Supplementary Information:
Dynamic-bond-induced sticky friction tailors non-Newtonian rheology

Hojin Kim, Mike van der Naald, Neil D. Dolinski, Stuart J. Rowan, and Heinrich M. Jaeger

a James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
b Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
c Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
‡ E-mail: stuartrowan@uchicago.edu (SJR), jaeger@uchicago.edu (HMJ)
S1. Characterization techniques

- Dynamic light scattering (DLS): A dynamic light scattering instrument (Wyatt Technology’s Mobius™) was used to measure the hydrodynamic radius of the synthesized thiol-functionalized silica particle and silica seed particle.

- Nuclear magnetic resonance spectroscopy: A Bruker Avance nanobay III HD 400 MHz nuclear magnetic resonance spectrometer was used to characterize the functionalized silica particles and the synthesized Michael-acceptors. The residual solvent CHCl$_3$ peak at $\delta = 7.26$ ppm was used as a reference peak.

S2. Characterization of the synthesized materials

- Functionalized silica particle characterization
 The functionalized silica particles were characterized with 1H NMR following the method reported by Crucho et al.1. 20 mg of silica particles was dissolved in a solution of 0.5 M NaOD in D$_2$O. To quantify the functional group density, 35 mg of 1,3,5-trioxane was added as an internal standard. The intensity of the (ONa)$_3$SiCH$_2$CH$_2$CH$_2$SH at $\delta = 2.43$ ppm was compared to that of the internal standard, giving 1.3 SH groups/nm2 surface area of silica particles.

DLS was used to measure the size of synthesized silica particles suspended in water. The synthesized particle density ($\rho = 1.92$ g/mL) was measured with the bromoform ($\rho = 2.89$ g/ml) and methanol ($\rho = 0.79$ g/ml) mixture at which the particle does not sediment or float.

- Characterization of Michael-acceptors
 The synthesized 1M, 1H, and 1N molecules were characterized with 1H NMR (400 MHz, CDCl$_3$ in Fig. S1):
 R=–OCH$_3$ (1M): $\delta = 8.23$ (s, 1H, C=CH), 7.67 (d, 2H, Ar-H), 6.91 (d, 2H, Ar-H), 3.82 (s, 3H, Ar-OCH$_3$, 3.42–3.77 (m, -CH$_2$-CH-), 1.25 (m, -CH$_3$) ppm.
 R=–H (1H): $\delta = 8.30$ (s, 1H, C=CH), 7.73 (t, 3H, Ar-H), 7.40 (d, 2H, Ar-H), 3.42–3.77 (m, -CH$_2$-CH-), 1.25 (m, -CH$_3$) ppm.
 R=–NO$_2$ (1N): $\delta = 8.37$ (s, 1H, C=CH), 8.24 (d, 2H, Ar-H), 7.88 (d, 2H, Ar-H), 3.42–3.77 (m, -CH$_2$-CH-), 1.25 (m, -CH$_3$) ppm.

- Solvent viscosity
 The viscosity of Michael-acceptor endcapped polymer fluids was measured using MCR301 or MCR702 rheometer (Anton Paar). In the measured shear rate range (1 – 100 s$^{-1}$), the fluid viscosity exhibited Newtonian behavior.
 $\eta_{1M_{230}} = 2564$ mPa·s, $\eta_{1M_{2000}} = 579$ mPa·s, $\eta_{1M_{4000}} = 1195$ mPa·s
\[\eta_{H_{230}} = 880 \text{ mPa} \cdot \text{s}, \quad \eta_{H_{2000}} = 528 \text{ mPa} \cdot \text{s}, \quad \eta_{H_{4000}} = 1048 \text{ mPa} \cdot \text{s} \]

\[\eta_{N_{2000}} = 980 \text{ mPa} \cdot \text{s}, \quad \eta_{N_{4000}} = 1393 \text{ mPa} \cdot \text{s} \]

Fig. S1 \[^1H \text{ NMR for } 1N_{4000}, 1H_{4000}, \text{ and } 1N_{4000} \text{ (top to bottom).} \]

S3. Preparation of piperidinium acetate

Piperidinium acetate was prepared following the reaction in Scheme S1. 40 mmol of piperidine (Sigma-Aldrich, 99%) and 40 mmol of acetic acid (Thermo Fisher Scientific, \(\geq 99.7\%\)) were added to a 50 mL round-bottom flask with 12 mL of chloroform. The solution was stirred with a magnetic stirrer for 30 min at room temperature. After the reaction, chloroform was removed from the product using a rotary evaporator.

\[^1H \text{ NMR (400 MHz, CDCl}_3) \text{ spectrum for piperidinium acetate: } \delta = 8.50 \text{ (s, 2H, } -\text{C-NH}_2^+) \text{, 3.02 - 2.95 (m, 4H, N-CH}_2 \text{), 1.97 (d, 3H, C}_3 \text{), 1.81 - 1.71 (m, 4H, N-C-CH}_2-\text{C), 1.67 - 1.58 (m, 2H, N-C-C-CH}_2 \text{ ppm.} \]
Scheme S1 Synthesis of piperidinium acetate.

Fig. S2 Relative viscosity $\eta_r = \eta / \eta_s$ for suspensions in $1M_{2000}$ (a), $1H_{2000}$ (b), and $1N_{2000}$ (c) as a function of shear rate $\dot{\gamma}$. Closed symbols: increasing stress ramp. Open symbols: decreasing stress on the ramp’s return cycle.

Fig. S3 Confirmation of steady-state viscosity. Relative viscosity $\eta_r = \eta / \eta_s$ is plotted as a function of shear stress τ for $\phi = 0.52$ thiol functionalized silica particle suspensions in $1M_{2000}$. The viscosity is measured at three different equilibrating times (5 s, 30 s, and 90 s per each τ).
Fig. S4 Viscosity as a function of time at constant shear rate $\dot{\gamma}$ for the suspension in $1H_{2000}$.

Fig. S5 The estimated fraction of bonded thiols as a function of K_{eq} for $M_{PPG}=230$ (blue), 2000 (orange), and 4000 g/mol (green) at fixed packing fraction ($\phi = 0.52$).
S4. The fraction of bonded thiols to form thia-Michael bonds

The equilibrium constant of thia-Michael reaction between thiol (–SH) and Michael-acceptor (–MA) is:

\[K_{eq} = \frac{[tMA]}{[−SH][−MA]} \]

The fraction of bounded thiol \(p \) at equilibrium suggests \([tMA] = p[−SH]_0\) and \([−SH] = (1 − p)[−SH]_0\), where \([−SH]_0\) is the initial molar concentration of thiol. Then, \([−MA] = [−MA]_0 − [tMA] = [−MA]_0 − p[−SH]_0\). Finally, the equilibrium constant is expressed by:

\[K_{eq} = \frac{p}{(1 − p)([−MA]_0 − p[−SH]_0)} \]

Using this equation, \(p \) is solved for all Michael-acceptors (Table S1). Based on this expression, we estimated the fraction of bonded thiols as a function of \(K_{eq} \) for all molecular weights in Fig. Fig. S5.

Table S1 The fraction of thiol reacted for the thia-Michael adduct formation.

<table>
<thead>
<tr>
<th></th>
<th>(M_{M_{PPG}} = 230 \text{ g/mol})</th>
<th>(M_{M_{PPG}} = 2000 \text{ g/mol})</th>
<th>(M_{M_{PPG}} = 4000 \text{ g/mol})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M_{M_{PPG}}</td>
<td>0.992</td>
<td>0.970</td>
<td>0.944</td>
</tr>
<tr>
<td>1H_{M_{PPG}}</td>
<td>0.999</td>
<td>0.996</td>
<td>0.992</td>
</tr>
<tr>
<td>1N_{M_{PPG}}</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Fig. S6 Relative viscosity \(\eta_r \) versus shear stress \(\tau \) of \(\phi = 0.52 \) thiol functionalized silica particle suspensions in different molecular weight BCAm-endcapped poly(propylene glycol) 1N_{2000} (a) and 1N_{4000} (b).
Fig. S7 Relative viscosity η/η_s as a function of shear rate $\dot{\gamma}$ of the suspension in hydroxy-terminated polypropylene glycol (2000 g/mol, PPG$_{\text{OH}2k}$) and in a mixture of PPG$_{\text{OH}2k}$ and 2,2’-(ethylenedioxy)diethanethiol (EDDT) with a 1-to-10 molar ratio. The packing fraction of suspensions is fixed at $\phi = 0.52$.

Fig. S8 A Raman spectrum of thiol-functionalized silica particles suspended in a mixture hydroxy-terminated polypropylene glycol (2000 g/mol, PPG$_{\text{OH}2k}$) and and 2,2’-(ethylenedioxy)diethanethiol (EDDT) (1-to-10 molar ratio). The packing fraction of suspensions is $\phi = 0.52$. A free thiol peak clearly appears at 2570 cm$^{-1}$, whereas there is limited-to-no disulfide formation from a peak at 510 cm$^{-1}$.
S5. Constraint-based Wyart-Cates model fitting

We fitted the experimental rheology curves using the constraint-based model by Guy et al.2,3, which extends an earlier model by Wyart and Cates (WC) that does not account for attractive interactions4. This modified WC model includes frictional and adhesive force responsible for the sliding and rolling constraints, respectively. Based on the WC model, the relative viscosity is expressed by

\[\eta_r = \left[1 - \frac{\phi}{\phi_J(a, f)} \right]^{-2} \]

with the jamming volume fraction $\phi_J(a, f)$ that is a function of the fraction of adhesion (a) and friction (f). These parameters can be expressed by $f(\tau) = \exp \left[-\frac{(\tau^*/\tau)^{\beta}}{\tau_a} \right]$ with the critical stress τ^* for dominating friction over particle repulsive interaction and $a(\tau) = 1 - \exp \left[-\frac{(\tau_a/\tau)^{\gamma}}{\tau_a} \right]$ with τ_a, the stress required to break the adhesion between contacting particles. With a and f, $\phi_J(a, f)$ can be interpolated with all four possible constraints,

\[\phi_J(a, f) = af\phi_{\text{alp}} + a(1-f)\phi_{\text{acp}}
+ (1-a)f\phi_{\mu} + (1-a)(1-f)\phi_{\text{rcp}} \]

where $\phi_{\mu} \equiv \phi_J(a = 0, f = 1)$, $\phi_{\text{alp}} \equiv \phi_J(a = 1, f = 1)$, $\phi_{\text{acp}} \equiv \phi_J(a = 1, f = 0)$, and $\phi_{\text{rcp}} \equiv \phi_J(a = 0, f = 0)$ are the onset packing fraction for shear jamming of frictional particles in the absence of adhesion, the adhesive loose packing fraction, adhesive close packing fraction $\phi_{\text{acp}} \equiv \phi_J(a = 1, f = 0)$, and random close packing for hard spheres, respectively. $\phi_{\text{rcp}} = 0.64$ was fixed, and the other parameters were used to fit both the shear-thinning and -thickening regimes of the measured rheology curve. Using the fitting parameter, yield stress of each suspension was estimated by setting $\phi_J = \phi$ where $\eta_r \to \infty$. Errors were estimated from fits with varied fitting ranges.
Supplementary References

