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Abstract

This document includes: Appendices A to F, Figures S 1 to S6, and Legends for movies S1 to
S14. Other supplementary files for this paper include: Movies S1 to S14.

A Finite difference approximation to gradients

MPCD cells are centered at positions of a cubic lattice xα,i = ia, for α = 1,2,3, i = 1,2, . . . ,ncells,
and ncells = V 1/3/a, is the number of collision cells along any one of the Cartesian axes. Each cell is
associated univocally to a vector (x1,i,x2, j,x3,k). We approximated spatial derivatives by centered finite
differences [1] as follows. The velocity gradient and the divergence of Qc
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were calculated, respectively,

from
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where the unwritten arguments of vcα and Qc
µα remain constant at cell’s center. We took into account pe-
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We also calculated second order derivatives under the central approximation scheme, e.g., for the
Laplacian of Qc
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we used
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B Physical parameters of OCO based AN-MPCD

In the one-constant approximation, elasticity is related with order correlation functions as [2–4]
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) , (B1)
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Figure S 1: Snapshots of the orientation states in simulated passive nematics (ζ = 0). (a) OCO based AN-
MPCD at U = 25kBT . (b) Hybrid based AN-MPCD.

and [5]

⟨δ ñα(k,ω)δ ñ∗α(k,ω)⟩= 2(2π)4γ1VT kBT

ω2 +(K/γ1)
2 k4

. (B2)

In equations (B1) and (B2) circumflex and tilde accents indicate the space and time–space Fourier
transform, respectively; γ1 = 2µ1/(9S2); [6] ω is the frequency; T is the scattering time; ⟨ . . .⟩ is the
time average; and ∗ denotes complex conjugate. Also, no summation over repeated indices is implied
and α = 1,2.

For calculations we proceed similarly as in references [4, 5]. To estimate L, we fitted equation (B1)
for four wave numbers (k1 = 2π j/V 1/3, j = 1,2,3,4; and k2 = k3 = 0). K/γ1 was obtained by fitting the
half-width at half-height of director correlations using k1 = 2π/V 1/3.

To calculate ξN, we assumed that fori in equation (4) can be used to generate a hierarchy of
equations for multipolar order parameters, as in various kinetic models of liquid crystals. [7–9] When
this hierarchy is cut at the quadrupolar order and closed by the Doi–Hess decoupling approximation,
⟨ui

αui
β

ui
γui

δ
⟩ = ⟨ui

αui
β
⟩⟨ui

γui
δ
⟩, [10] material ordering is described by a free energy of the LdG type. [11]

This permits to identify αF = 6Dµ1 [1−U/(3kBT )], βF =−4Dµ1U/(3kBT ), and γF = 2Dµ1U/(3kBT ).
Here, D is the rotational diffusion coefficient that was approximated in terms of the relaxation of
director correlations, ⟨(nα(t)−nα(0))(nα(t)−nα(0))⟩ ≃ 4Dt, where summation over repeated indices
is reassumed. [12] We obtained, D ≃ 0.014, 0.015, 0.023, and 0.039 t−1

0 for U = 15, 20, 25, and 30kBT ,
respectively. We used measurements of S, L and K/γ1 to calculate the corresponding values of µ1 and,
subsequently, LdG coefficients. Finally, equation (13) yields ξN as reported in table 1.

C Passive nematic states

When ζ = 0, OCO based and Hybrid based AN-MPCD yield stable nematic phases in which the director
field points along the x3 axis. Passive orientation configurations obtained after thermalization are
illustrated in figure S 1 (a) and (b) for OCO based AN-MPCD at U = 25kBT and Hybrid based AN-
MPCD, respectively.
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D Calculation of correlation functions and spectra

We obtained averages in equation (19) by using the ensemble of AN-MPCD particles and their velocities
over different time-steps. Correlation at instant t was calculated from contributions of all particles
located within spherical shells of radius R and width ∆R, centered at positions ri

α(t). The average over
all particles in the system yields
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where ri j(t) = |r j(t)−ri(t)|; Ri = R−∆R/2 and Ro = R+∆R/2 are the internal and external radii of the
shell, respectively; and

Ni(R) = ∑
Ri<ri j(t)≤Ro

1. (D2)

Then, we obtained Cv (R) after time averaging ⟨v̄α (R+ r(t)) v̄α (r(t))⟩ and normalising.
In the case of energy spectra in equations (21) and (22), we calculated first the instantaneous

three-dimensional energy densities
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from discrete Fourier transforms of flow and orientation at time t. Due to the finite size of the simulation
boxes and the periodicity of boundary conditions, permitted values of the wave vector are discrete,
namely, kα = jkmin, where kmin = 2π/(V )1/3 and j = 1,2, . . . ,ncells.

Ekin (k′; t) and Eela (k′; t) are averaged by summing contributions of the discrete points located within
spherical shells of radius k = jkmin and width ∆k = kmin. Finally, results are averaged over time.

E Rescaled correlation functions

Correlations functions Cv(R) and CW(R), as well as spectra Eela(k) and Ekin(k), exhibit universal scaling
behaviour which can be revealed by rescaling lengths and correlation values in figures 9-12. Curves for
Cv and CW collapse when they are plotted as function of the normalized radial distance R/lv. This is
illustrated in figure S 2.

In OCO based AN-MPCD, lv and lW fall on single curves when they are given in units of the collision
cell size a. This is shown in figure S 3 which was obtained from data in figures 10 (a) and (c) multiplied
by ξN(U) given in table 1.

Elastic energy spectra obtained from OCO based AN-MPCD collapse when they are multiplied by
ζ 1/3 and plotted as function of the normalized wave number, k/k∗. This is illustrated in figure S 4 (a)
for simulations at U = 15 kBT . Finally, kinetic energy spectra fall on a single curve when they are
plotted as function of the wave number normalized with respect to the velocity correlation length: k lv,
as shown in figure S 4 (b).
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Figure S 2: Flow correlation functions measured with cell-level quantities as function of the normalised dis-
tance R/lv. (a) Velocity autocorrelations in OCO based AN-MPCD at U = 30kBT . (b) Velocity autocorre-
lations in Hybrid based AN-MPCD. (c) Vorticity autocorrelations in OCO based AN-MPCD at U = 30kBT .
(d) Vorticity autocorrelations in Hybrid based AN-MPCD. In all cases ζ is given in units of kBT/a3.

Figure S 3: Velocity and vorticity correlation lengths, lv and lW, respectively, in units of the cell size a in
OCO based AN-MPCD. Lines indicate the decaying behaviour ζ−1/3.
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Figure S 4: Collapse of spectra in OCO based AN-MPCD in the case U = 15kBT . (a) Elastic energy spectra
times ζ 1/3 (in units of (kBT )4/3 /a). The corresponding curves are those in figure 11 (a). Normalisation of k
was achieved using k∗ values from figure 11 (c). (b) Kinetic energy spectra as function of the dimensionless
wave number, k lv. The associated data are those in figure 12 (a). lv values were taken from figure 10 (a). In
all cases ζ is given in units of kBT/a3.

Movie captions

1. Movie S1: Active nematics simulated by OCO based AN-MPCD with activity ζ = 0.3kBT/a3

show distortions but no creation of disclinations. The following features are valid here and in
Movies S2 to S6: the director field at collision cells is illustrated by small bars scaled 4 times,
system starts from a state of uniform orientation, movie length corresponds to 2.5×104 MPCD
steps, and frames are separated by 2× 102 steps. Large distortions are emphasised by including
isosurfaces of order parameter value Sc = 0.75.

2. Movie S2: Nematic liquid crystals simulated by OCO based AN-MPCD with activity ζ =
0.4kBT/a3 present active turbulence and dynamic disclinations here revealed by isosurfaces of
order parameter value Sc = 0.65.

3. Movie S3: Nematic liquid crystals simulated by OCO based AN-MPCD with activity ζ =
1.0kBT/a3 present active turbulence and dynamic disclinations here revealed by isosurfaces of
order parameter value Sc = 0.60. The density of topological defects increases with ζ as can be
observed by comparing this movie with Movie S2.

4. Movie S4: Active nematic liquid crystals simulated by Hybrid based AN-MPCD at activity ζ =
10kBT/a3 thermalizes at a distorted state without disclinations. Large distortions are emphasised
by including isosurfaces of order parameter value Sc = 0.65.

5. Movie S5: Hybrid based AN-MPCD simulations at activity ζ = 15kBT/a3 yield nematics with
active turbulence and dynamic disclinations revealed by isosurfaces of order parameter value Sc =
0.50.

6. Movie S6: Hybrid based AN-MPCD simulations at activity ζ = 30kBT/a3 yield nematics with
active turbulence and dynamic disclinations revealed by isosurfaces of order parameter value Sc =
0.45. The density of topological defects increases with ζ as can be observed by comparing this
movie with Movie S5.
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7. Movie S7: Annihilation of a disclination loop in OCO based AN-MPCD simulations with param-
eters U = 25kBT and ζ = 2.0kBT/a3. These parameters also apply for Movies S8 to S10. Here
and in Movies S8 to S14, structures that follow annihilation or creation dynamics are highlighted
in orange color while the network of curvilinear disclinations is shown in purple. Also, small cubes
with volume of one MPCD collision cell are included to discern the size of the analysed structures.

8. Movie S8: A disclination loop merges with the network of topological defects in OCO based
AN-MPCD.

9. Movie S9: A disclination loop is nucleated from a region without defects in OCO based AN-
MPCD.

10. Movie S10: The network of curvilinear disclinations in OCO based AN-MPCD emits a defect
loop into the bulk.

11. Movie S11: Self-annihilation of a disclination loop in Hybrid based AN-MPCD. Here and in
Movies S12 to S14, simulations were performed with activity ζ = 30kBT/a3.

12. Movie S12: A disclination loop in the bulk merges with the network of topological defects in
Hybrid based AN-MPCD simulations.

13. Movie S13: Nucleation of a disclination loop in Hybrid based AN-MPCD simulations.

14. Movie S14: The network of topological defects in Hybrid based AN-MPCD splits emitting a
disclination loop into the bulk.
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