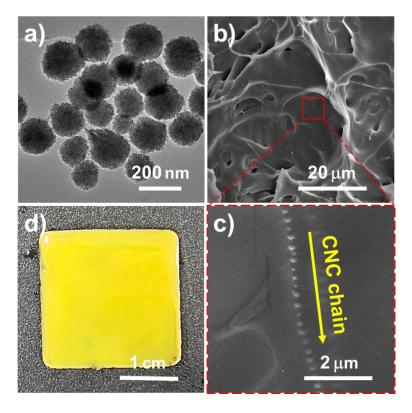
Electronic Supplementary Information

K⁺-sensitive photonic crystal hydrogel sensor for efficient visual monitoring of hyperkalemia/hypokalemia


Yan-Lin Wang^a, Xi Wang^a, Hai-Rong Yu^{a,b,*}, Ting Liang^{a,b}, Xing-Bin Lv^{a,b}, Chang-Jing Cheng^{a,b,*}

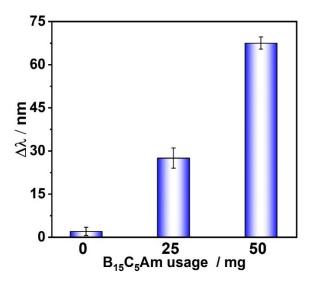
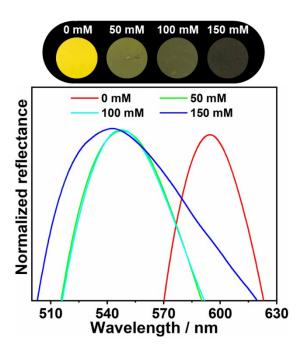
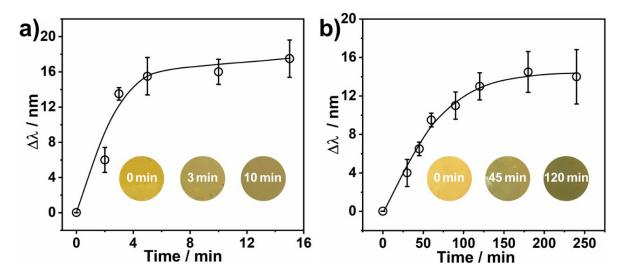
^a College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China

^b Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China

Email addresses: chengcj@swun.edu.cn (C.-J. Cheng), yuhr@swun.edu.cn (H.-R. Yu).

^{*} Corresponding authors.

Fig. S1 (a) Typical TEM image of the superparamagnetic Fe_3O_4 NPs with a d_H of 166 nm. SEM images (b, c), and digital photograph (d) of the PANBC-166.

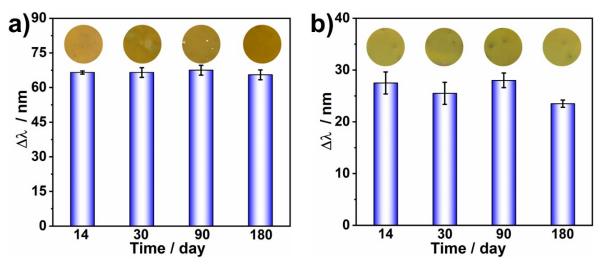

Fig. S2 Response of the PANBC PCHs synthesized with different B15C5Am usages () to 150 mM $\rm K^+$ aqueous solution.

Fig. S3 Reflection spectra and optical photographs (*top*) of the PANBC-166 in K⁺ solutions with high concentrations.

Fig. S4 $\Delta\lambda$ value and optical photographs (*inset*) of the PANBC-166 with thicknesses of 250 (a) and 1000 μ m (b) in 5 mM K⁺ solutions for different time.

Fig. S5 K⁺-responsive detection performances of the PANBC sensors after different storage time. (a) PANBC-185 detects 150 mM K⁺, and (b) PANBC-166 detects 5 mM K⁺.