
The random walker’s toolbox for analyzing single-particle tracking data –

Supplement

Florian Rehfeldt and Matthias Weiss

Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany

I. LIST OF ROUTINES IN THE TOOLBOX

Matlab routines and data files are provided on GitHub (https://github.com/mweisslab/sptanalysis). For consis-
tency, all Matlab routines should be moved into a subfolder routines, data files should be moved into a subfolder
routines/data). Routines have been tested extensively with Matlab R2018b on MacOSX, R2020b on Linux, and
with the comparable open-source clone Octave 6.2.0 on Linux. Full functionality was seen for both Matlab versions.
For Octave, the function wfbm is not available, i.e. the creation of fractional Brownian motion tracks will require an
auxiliary function. Also, in Octave the subroutines plotter and oplot in the program → driver.m (with which all
figures have been prepared) will have to be placed before the rest of the code (instead at the end), and graphics han-
dles for changing fonts may have to be amended. Generating histograms will require a replacement of the command
histcounts to the more basic command histc. Besides these points, all analysis routines seemed to work also in
Octave.
For working with the evaluation routines, the program → driver.m may serve as an initial template for designing
the data-analysis workflow. This master program not only provides examples of how to call the individual evaluation
routines but also how to create and store simulated trajectories with different properties by distinct data production
routines (these parts are commented by a % sign and will have to be uncommented before use). Altogether, the
following routines define the toolbox:

make rndwalk.m pos = make rndwalk(N,alpha,dx)

N length of trajectories N

alpha twofold Hurst coefficient

dx mean step length (per dimension)

pos N × 2-array of positions

This routine creates a two-dimensional FBM trajectory of length N with mean step size dx and Hurst coefficient H = α/2.

make switchwalk.m [sx,sy] = make switchwalk(dt,N,M,xx,yy,k1,k2,fact)

dt frame time ∆t

N length of trajectories N

M trajectory ensemble size M

xx,yy array of x-,y-coordinates of FBM trajectories

k1 switch rate to low mobility

k2 switch rate to high mobility

fact ratio of diffusion coefficients at high & low mobility (fK = Khigh/Klow ≥ 1)

sx,sy array of x-,y-coordinates of intermittent FBM trajectories

Based on an ensemble of FBM trajectories, this routine creates intermittent FBM trajectories that switch between a high-
and a low-mobility state (ratio fK = Khigh/Klow ≥ 1) with rates k1 and k2, while maintaining the Hurst coefficient H = α/2.

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2023



2

make blurwalk.m pos = make blurwalk(N,alpha,dx,np)

N length of trajectories N

alpha twofold Hurst coefficient

dx mean step length (per dimension)

np number of photons per substep (resonable range: np ∈ [10, 103])

pos N × 2-array of positions

This routine creates a two-dimensional FBM trajectory of length N with mean step size dx and Hurst coefficient H = α/2
including static and dynamic localization errors (tuned by the specified number of photons np).

ta msd.m [tau,msdt] = ta msd(dt,xx,yy,dim,dis)

dt frame time ∆t

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

dim dimension(s) for TA-MSD calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

tau array of lag times

msdt array of TA-MSD values

This routine calculates the TA-MSD of a single trajectory in two dimensions (xy) or along an individual coordinate (x or y),
with an equidistant spacing of lag times on a linear or logarithmic scale.

ta msd nonoverlap.m [tau,msdt] = ta msd nonoverlap(dt,xx,yy,dim,dis)

dt frame time ∆t

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

dim dimension(s) for TA-MSD calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

tau array of lag times

msdt array of TA-MSD values

Similar to ta msd.m but without sliding-window average.

ta mom.m [tau,mom] = ta mom(dt,xx,yy,q,dim,dis)

dt frame time ∆t

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

q order of the moment to be calculated

dim dimension(s) for TA k-th moment calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

tau array of lag times

mom array of TA q-th moment values

This routine calculates the TA q-th moment of a single trajectory in two dimensions (xy) or along an individual coordinate (x
or y), with an equidistant spacing of lag times on a linear or logarithmic scale.



3

ea msd.m [tau,msde] = ea msd(dt,N,M,xx,yy,dim,dis)

dt frame time ∆t

N length of trajectories N

M trajectory ensemble size M

xx array of x-coordinates of trajectories

yy array of y-coordinates of trajectories

dim dimension(s) for EA-MSD calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

tau array of lag times

msde array of EA-MSD values

This routine calculates the EA-MSD of an ensemble of M trajectories in two dimensions (xy) or along an individual
coordinate (x or y), with an equidistant spacing of lag times on a linear or logarithmic scale.

eata msd.m [tau,msdte] = eata msd(dt,N,M,xx,yy,dim,dis)

dt frame time ∆t

N length of trajectories N

M trajectory ensemble size M

xx array of x-coordinates of trajectories

yy array of y-coordinates of trajectories

dim dimension(s) for EA-TA-MSD calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

tau array of lag times

msdte array of EA-TA-MSD values

This routine calculates the EA-TA-MSD of an ensemble of M trajectories in two dimensions (xy) or along an individual
coordinate (x or y), with an equidistant spacing of lag times on a linear or logarithmic scale.

passage time.m [tau] = passage time(dt,xx,yy,r,dim)

dt frame time ∆t

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

r escape radius

dim dimension(s) for TA k-th moment calculation (0=xy, 1=x, 2=y)

tau time at which the trajectory overcomes the escape radius

This routine calculates the time at which the trajectory overcomes the escape radius in two dimensions (xy) or along an
individual coordinate (x or y).

eb.m [tau,E] = eb(dt,N,M,xx,yy,dim,dis)

dt frame time ∆t

N length of trajectories N

M trajectory ensemble size M

xx array of x-coordinates of trajectories

yy array of y-coordinates of trajectories

dim dimension(s) for EB calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispacing on linear/logarithmic scale

tau array of lag times

E array of ergodicity breaking parameters

This routine calculates the ergodicity breaking parameter E of an ensemble of M trajectories in two dimensions (xy) or along
an individual coordinate (x or y), with an equidistant spacing of lag times on a linear or logarithmic scale.



4

get increm.m [dx,dy] = get increm(dn,xx,yy,chi)

dn lag in units of frame time, i.e. δt/∆t

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

chi true/false: normalized step increments (y/n)

dx steps taken within dn frames in x

dy steps taken within dn frames in y

This routine calculates the steps δx and δy taken within a period δt = n∆t in a single trajectory, normalization is optional.

ta quad.m [tau,quat] = ta quad(dt,xx,yy,dim,dis)

dt frame time ∆t

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

dim dimension(s) for TA 4th-moment calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

tau array of lag times

quat array of TA 4th-moment values

This routine calculates the TA 4th-moment of a single trajectory in two dimensions (xy) or along an individual coordinate (x
or y), with an equidistant spacing of lag times on a linear or logarithmic scale.

ta gaussianity.m [tau,g] = ta gaussianity(dt,xx,yy,dim,dis)

dt frame time ∆t

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

dim dimension(s) for TA-Gaussianity calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

tau array of lag times

g array of TA-Gaussianity values

This routine calculates the TA-Gaussianity of a single trajectory in two dimensions (xy) or along an individual coordinate (x
or y), with an equidistant spacing of lag times on a linear or logarithmic scale.

eata gaussianity.m [tau,g] = eata gaussianity(dt,N,M,xx,yy,dim,dis)

dt frame time ∆t

N length of trajectories N

M trajectory ensemble size M

xx array of x-coordinates of trajectories

yy array of y-coordinates of trajectories

dim dimension(s) for EA-TA-Gaussianity calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

tau array of lag times

g array of EA-TA-Gaussianity values

This routine calculates the EA-TA-Gaussianity of an ensemble of M trajectories in two dimensions (xy) or along an
individual coordinate (x or y), with an equidistant spacing of lag times on a linear or logarithmic scale.



5

acf sqinc.m [tau,acf] = acf sqinc(dt,dn,xx,yy,dim,dis)

dt frame time ∆t

dn frame lag for steps, given by δt/∆t

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

dim dimension(s) for correlator calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

tau array of lag times

acf autocorrelation of squared increments

This routine calculates the autocorrelation of fluctuations of squared increments of a single trajectory in two dimensions (xy)
or along an individual coordinate (x or y), with an equidistant spacing of lag times on a linear or logarithmic scale.

ea acf sqinc.m [tau,acfe] = ea acf sqinc(dt,dn,N,M,xx,yy,dim,dis)

dt frame time ∆t

dn frame lag for steps, given by δt/∆t

N length of trajectories N

M trajectory ensemble size M

xx array of x-coordinates of trajectories

yy array of y-coordinates of trajectories

dim dimension(s) for correlator calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

tau array of lag times

acfe ensemble-averaged autocorrelation of squared increments

This routine calculates the ensemble-averaged autocorrelation of fluctuations of squared increments in two dimensions (xy) or
along an individual coordinate (x or y), with an equidistant spacing of lag times on a linear or logarithmic scale.

lch.m [tau,Sd] = lch(dt,dn,xx,yy)

dt frame time ∆t

dn number of positions to be used for local convex hull, typically 3-10

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

tau array of lag times

Sd normalized maximum diameter of local convex hull, Sd

This routine calculates the maximum diameter of the LCH (based on dn points) of a single trajectory as a function of time.
Values are normalized to the mean within the trajectory.

vacf.m [xi,vacf] = vacf(dt,dn,xx,yy,dim,dis)

dt frame time ∆t

dn period for velocity, given by δt/∆t

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

dim dimension(s) for VACF calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

xi array of rescaled time ξ = τ/δt

vacf array of VACF values

This routine calculates the VACF of a single trajectory in two dimensions (xy) or along an individual coordinate (x or y),
with an equidistant spacing of lag times on a linear or logarithmic scale.



6

ea vacf.m [xi,vacfte] = ea vacf(dt,dn,N,M,xx,yy,dim,dis)

dt frame time ∆t

dn period for velocity, given by δt/∆t

N length of trajectories N

M trajectory ensemble size M

xx array of x-coordinates of trajectories

yy array of y-coordinates of trajectories

dim dimension(s) for EA-VACF calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

xi array of rescaled time ξ = τ/δt

vacfte array of EA-VACF values

This routine calculates the EA-VACF of an ensemble of M trajectories in two dimensions (xy) or along an individual
coordinate (x or y), with an equidistant spacing of lag times on a linear or logarithmic scale.

vacf fbm theo.m [xi,vacf] = vacf fbm theo(alpha)

alpha scaling exponent (twofold Hurst coefficient)

xi array of rescaled time ξ = τ/δt

vacf array of VACF values for FBM

This routine calculates the FBM prediction for the VACF.

psd.m [f,psdt] = psd(dt,xx,yy,dim,dis)

dt frame time ∆t

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

dim dimension(s) for PSD calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

f array of frequencies

psdt array of PSD values

This routine calculates the PSD of a single trajectory in two dimensions (xy) or along an individual coordinate (x or y), with
an equidistant spacing of frequencies on a linear or logarithmic scale.

ea vacf.m [f,psde] = ea psd(dt,N,M,xx,yy,dim,dis)

dt frame time ∆t

N length of trajectories N

M trajectory ensemble size M

xx array of x-coordinates of trajectories

yy array of y-coordinates of trajectories

dim dimension(s) for EA-PSD calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

f array of frequencies

psde array of EA-PSD values

This routine calculates the EA-PSD of an ensemble of M trajectories in two dimensions (xy) or along an individual
coordinate (x or y), with an equidistant spacing of frequencies on a linear or logarithmic scale.



7

cov gamma.m [fT,gam] = cov gamma(dt,N,M,xx,yy,dim,dis)

dt frame time ∆t

N length of trajectories N

M trajectory ensemble size M

xx array of x-coordinates of trajectories

yy array of y-coordinates of trajectories

dim dimension(s) for calculation (0=xy, 1=x, 2=y)

dis ’lin’/’log’: lag times equispaced on linear/logarithmic scale

fT array of frequencies times total time, fT

gam array of coeff. of variation values γ

This routine calculates the coefficient of variation γ of PSDs from an ensemble of M trajectories in two dimensions (xy) or
along an individual coordinate (x or y), with an equidistant spacing of dimensionless frequencies fT on a linear or logarithmic
scale.

straightness.m S = straightness(xx,yy,lb,ub)

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

lb position at which straightness calculation starts

ub position at which straightness calculation ends

S straightness

This routine calculates the straightness of a trajectory between the specified time points.

asphericity.m [An,Ad] = asphericity(xx,yy)

xx array of x-coordinates of single trajectory

yy array of y-coordinates of single trajectory

An nominator of asphericity As

Ad denominator of asphericity As

This routine calculates nominator and denominator of the asphericity As of a single two-dimensional trajectory.

vacf fbm err.m [xi,vacf] = vacf fbm err(dn,theta,alpha)

dn period for velocity, given by δt/∆t

theta constant for static localization offset

alpha scaling exponent (twofold Hurst coefficient)

xi array of rescaled time ξ = τ/δt

vacf array of VACF values for FBM with localization errors

This routine calculates the FBM prediction for the VACF with localization errors.



8

II. LIST OF DATA FILES

For test purposes, several ensembles of two-dimensional fractional Brownian motion (FBM) based trajectories and an
experimental data set are included in subfolder routines/data. All numerically obtained data sets, produced with
the master program → driver.m, consist of M = 100 trajectories, each with a length of N = 500 positions, using a
time increment ∆t = 0.1 s, and a (basic) average step size ∆x = 0.01 µm.

data set 1

FBM tracks (created with make rndwalk.m).

1. FBM xx a 0.6.dat & FBM yy a 0.6.dat (α = 2H = 0.6, subdiffusion)

2. FBM xx a 1.0.dat & FBM yy a 1.0.dat (α = 2H = 1.0, normal diffusion)

3. FBM xx a 1.4.dat & FBM yy a 1.4.dat (α = 2H = 1.4, superdiffusion)

data set 2

Intermittent FBM tracks (created with make switchwalk.m).

1. FBM switch xx a 0.6.dat & FBM switch yy a 0.6.dat
(α = 2H = 0.6, subdiffusion)
created from data set (1a) with k1 = 0.4/s, k2 = 0.1/s, and fK = 2

2. FBM switch xx a 1.0.dat & FBM switch yy a 1.0.dat
(α = 2H = 1.0, normal diffusion)
created from data set (1b) with k1 = 0.2/s, k2 = 0.3/s, and fK = 3

data set 3

FBM tracks with static localization error (created with make blurwalk.m, np = 50).

1. FBM xx a 0.6 np 50.dat & FBM yy a 0.6 np 50.dat (α = 2H = 0.6, subdiffusion)

2. FBM xx a 1.0 np 50.dat & FBM yy a 1.0 np 50.dat (α = 2H = 1.0, normal diffusion)

3. FBM xx a 1.4 np 50.dat & FBM yy a 1.4 np 50.dat (α = 2H = 1.4, superdiffusion)

data set 4

FBM tracks with dynamic localization error (created with make blurwalk.m, np = 900).

1. FBM xx a 0.6 np 900.dat & FBM yy a 0.6 np 900.dat (α = 2H = 0.6, subdiffusion)

2. FBM xx a 1.0 np 900.dat & FBM yy a 1.0 np 900.dat (α = 2H = 1.0, normal diffusion)

3. FBM xx a 1.4 np 900.dat & FBM yy a 1.4 np 900.dat (α = 2H = 1.4, superdiffusion)

data set 5

Ensemble of M = 100 experimentally obtained two-dimensional tracks of telomeres in the nucleus of untreated
mammlian cells, each having a length N = 2000 and a frame time ∆t = 0.125 s (part of the data set that has been
analyzed and discussed in detail in (Krapf et al., 2019; Stadler and Weiss, 2017)). Data have been shown to exhibit a
transient FBM-like subdiffusion with α = 2H ≈ 0.5, followed by normal diffusion on larger time scales (Stadler and
Weiss, 2017), in line with the motion of monomers in a Rouse polymer (for which such a subdiffusion is expected
below the Rouse time). In addition, an excellent agreement of these data with key predictions for the power-spectral
density of FBM trajectories has been found (Krapf et al., 2019).

1. telomers xx.dat & telomers yy.dat

References

Krapf, D., N. Lukat, E. Marinari, R. Metzler, G. Oshanin, C. Selhuber-Unkel, A. Squarcini, L. Stadler, M. Weiss, and X. Xu,
2019, Phys Rev X 9, 011019.

Stadler, L., and M. Weiss, 2017, New J. Phys. 19, 113048.


