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1. Regression model for directly mapping a composition vector to the corresponding 

RDF 

 

a) Random Forest (RF) 

 

Figure S1: Comparison of actual RDF and predicted RDF for 12 different compositions in case of 

a RF model that directedly correlates composition vector to the RDF function. The Composition 

parameters are the same as tabulated in Table S1.  
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We use the random forest (RF) algorithm to develop a regression model between the 5-

dimensional composition vector and 100-dimensional RDF. The RF regressor model employs 

several important hyperparameters, including max_depth, min_samples_leaf, and 

min_samples_split. We adjust these parameters to control the complexity of the decision trees 

in the RF and to prevent the overfitting to the training data. The max_depth specifies the 

maximum depth of each decision tree in the forest. Setting a maximum depth helps to prevent 

the tree from becoming too complex and overfitting to the training data. We have selected the 

max_depth= 4 in this model, indicating that each decision tree will have a maximum depth of 

four levels. The min_samples_leaf specifies the minimum number of samples required to form 

a leaf node in the decision tree. Setting a higher min_samples_leaf can prevent the tree from 

overfitting to noisy or irrelevant data points. In this model, the min_samples_leaf is set to 5, 

indicating that each leaf node in the decision tree must contain at least five samples. Finally, 

the min_samples_split specifies the minimum number of samples required to split an internal 

node in the decision tree. Setting a higher min_samples_split can prevent the tree from 

overfitting to small or insignificant subsets of the data. We have set min_samples_split= 3, 

indicating that a node must have at least 3 samples to be split into two child nodes. Overall, 

these hyperparameters help to control the complexity of the decision trees and prevent 

overfitting, leading to a more accurate RF regressor model. The choice of this set of parameters 

is made based on many initial trials in order to achieve the optimal performance. The 

performance of the RF model is shown in Figure S1. It suggests a significant mismatch between 

an actual RDF and RF-predicted RDF.  
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b) Extreme Gradient Boosting (XG-Boost) 

 

We use XG-Boost regressor, a powerful machine learning model, to build a regression model 

between the 5-dimensional compositional input vector and the 100-dimensional RDF. In this 

model, the learning_rate, max_depth, and n_estimators are the hyperparameters. The 

learning_rate, which is defined as the step size of the gradient descent optimization process, is 

set to be 0.1. The max_depth hyperparameter is set to be 5, which controls the maximum depth 

of each decision tree. We set the n_estimators to be 51, which is the number of decision trees 

in the model. Finally, we use mean squared error as the objective function of the model, which 

is minimized during the training.  The performance of the XG-Boost model is shown in Figure 

S2.  

 

 

 

 

 

 

 

Figure S2: Comparison of actual RDF and predicted RDF for 12 different compositions in case of an XG 

Boost model that directedly correlates composition vector to the RDF function. The Composition 

parameters are the same as tabulated in Table S1. 



4 

 

c) Deep Neural Network (DNN) 

 

We implement a sequential neural network model for the regression analysis within the Keras 

opensource package. The objective is to create a correlation between a 5-dimensional input 

compositional vector and 100-dimensional output RDF vector. The model architecture consists 

of three hidden layers each with the rectified linear unit (ReLU) activation function. The first 

hidden layer has 200 neurons, the second and third layers each have 100 neurons.  The output 

layer has 100 neurons with the linear activation function appropriate for the regression task. 

We use the Adam optimizer with a learning rate of 0.0001 with the mean squared error as the 

loss function. We train the model for 1000 epochs during which weights between connecting 

neurons are optimized. We chose this set of parameters based on several trials to optimize the 

model performance. The performance of the best DNN model is shown in Figure S3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: Comparison of actual RDF and predicted RDF for 12 different compositions in case of a DNN 

model that directedly correlates composition vector to the RDF function. The Composition parameters are the 

same as tabulated in Table S1. 
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d) Support Vector Regression (SVR) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The support vector regression (SVR) model is a powerful machine learning technique used 

for predicting continuous output values. We implement the SVR model using the scikit-

learn library. We use three hyperparameters to fine-tune the model performance: C, gamma, 

and kernel. The C parameter controls the regularization strength of the model and adjusts 

the trade-off between achieving a large margin and minimizing the prediction error. The 

gamma parameter determines the width of the radial basis function (RBF) kernel and 

controls the smoothness of the decision boundary. The kernel parameter specifies the type 

of kernel function used for the SVM model, and we have used the polynomial kernel in this 

study. We have set the value of the C parameter to 3. The MultiOutputRegressor module 

has been used to perform multi-output regression, which helps us predict multiple 

continuous variables simultaneously. We chose hyperparameters based on previous 

research and empirical experiments, and their values have been selected through trial and 

error to achieve optimal performance on the given dataset. 

 

 

 

Figure S4: Comparison of actual RDF and predicted RDF for 12 different compositions in case of a SVM 

model that directedly correlates composition vector to the RDF function. The Composition parameters are 

same as tabulated in Table S1. 
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2. Dimensionality reduction of RDF 

 

As discussed in the main text, there are various methods available for feature extraction and 

dimensionality reduction. Here, we test the performance of principal component analysis 

(PCA) and deep neural network (DNN) autoencoder for reducing the dimension of 

nanoparticles RDF in a polymer matrix. Upon dimensionality reduction, we build an RF model 

to correlate the composition vector of a PNC and the corresponding latent space representation 

of an RDF. The performance of these two approaches is discussed below.    

 

a) PCA-based dimensionality reduction 

The PCA model is used to reduce the dimensionality of RDF data by extracting a new set of 

uncorrelated variables called principal components. The main hyperparameter of PCA is the 

number of principal components to retain, which directly affects the amount of variance in the 

data that is preserved. We build the PCA model with 16 principal components. The 16-

dimensional latent space gives the optimal performance. The reconstructed RDF image shows 

 

Figure S5: PCA is used to map RDFs to a latent space of dimension 12, and then RF is used to correlate composition 

matrix and latent space representation. The performance of this ML pipeline is shown here for 12 unknown 

compositions. The Composition parameters are same as tabulated in Table S1.   
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a close resemblance to the original RDF image, indicating a good match. We then build a RF 

model to find the correlation between a 5-dimensional compositional input vector and a 16-

dimensional reduced vector of an RDF image. We primarily focusing on two key parameters 

during the regression: the number of decision trees and the size of the feature subsets used 

when splitting a node. We perform a detailed analysis of the model's performance with varying 

numbers of trees, and our results indicate that using 100 decision trees results in the lowest 

prediction error.  The prediction of RF is then mapped to the actual RDF using inverse 

transform method. We utilize the scikit-learn library for this model building. The performance 

of such a regression model is shown in Figure S5.   

 

b) Deep neural network (DNN)-based dimensionality reduction:  

We use a DNN for RDF dimensionality reduction. The architecture of the DNN autoencoder 

creates a latent space of dimension 10 for a RDF vector of dimension 100. The decoder part of 

the encoder consists of four hidden layers. The number of nodes in the successive dense layers 

of the DNN is 1000, 500, 100, and 10, respectively. The topology of the decoder is a mirror 

 

Figure S 6: DNN autoencoder is used to map RDFs to a latent space of dimension 10, and then RF is used to correlate 

the composition matrix and latent space representation of a PNC. The performance of this ML pipeline is shown here 

for 12 unknown compositions. The Composition parameters are the same as tabulated in Table S1.   
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image of the encoder. Therefore, the number of nodes in the successive hidden layers of the 

decoder is 10, 100, 500, and 1000 respectively. The input and output of the autoencoder is of 

dimension 100, which is same the RDF vector.  The ReLU activation function is used to 

activates all the neurons of all the hidden layers. We use the Adam optimizer with a learning 

rate of 0.0003. The mean squared error (MSE), which measures the difference between the 

predicted and actual values of the output, is considered as the loss function of the model. We 

train the model for 1000 epochs with shuffling of the training data after each epoch. The choice 

of the hyperparameters is based on several trials in order to optimize the performance of the 

model. Subsequently, we build a RF regression model between a 5-dimensional compositional 

input vector and a 10-dimensional latent vector. The two main parameters that we focus on are 

the number of decision trees and the size of the subsets of features selected randomly when 

splitting a node. We conduct a thorough analysis of the model's performance with different 

numbers of trees and have found that utilizing 400 decision trees leads to the lowest prediction 

error. We build the RF regression model using the scikit-learn library. The performance of the 

DNN-based RF model is shown in Figure S6.  
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3. Dimension of the Latent Space of the nanoNET pipeline:  

 

We carry out a systematic analysis to identify the appropriate dimension of the latent space of 

RDFs, which can be correlated to the composition vector via a random forest regressor. As 

shown in Figure S7, the latent space of dimension 8 appears to be the most efficient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7: Performance of random forest regressor. R2 score for training and test data for models that build a correlation between 

the composition vector and latent space vector for different dimensions of the latent space.   
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4. Composition Parameters of the PNCs (Training and Test Data) 

 

Here, 𝜖𝑃−𝑁𝑃 is the interaction parameter between the polymer and nanoparticle,  
𝜖𝑁𝑃−𝑁𝑃 is the interaction parameter between a pair of nanoparticles, D is diameter of a 

nanoparticle, 𝑵𝑵𝑷 is the number of nanoparticles present in the polymer matrix, and  
𝑵𝒑𝒐𝒍𝒚𝒎𝒆𝒓 is the number of monomers in a polymer chain. 

 
No. 𝜖𝑃−𝑁𝑃  𝜖𝑁𝑃−𝑁𝑃  D 𝑵𝑵𝑷 𝑵𝒑𝒐𝒍𝒚𝒎𝒆𝒓 

1  (Fig. 7a) 0.6 1.5 5 8 25 

2  (Fig. 7b) 0.2 0.2 4 8 25 

3  (Fig. 7c) 0.6 2 4 8 30 

4  (Fig. 7d) 0.6 0.6 4 8 25 

5  (Fig. 7e) 0.6 0.2 3 8 35 

6 (Fig. 7f) 0.2 2 4 8 30 

7  (Fig. 7g) 0.2 1 3 8 25 

8  (Fig. 7h) 0.6 0.2 3 12 35 

9  (Fig. 7i) 0.05 0.1 5 12 30 

10  (Fig. 7j) 0.6 1.5 5 12 25 

11  (Fig. 7k) 0.8 0.2 4 12 40 

  12 (Fig. 7l) 0.4 0.2 2 12 30 

Table 1: Compositional parameters of data (test data) on which performance of the model has been 

evaluated. RDF predictions for 12 PNCs are shown in Figure 7 of the main article.  These parameters 

are also used in Figures S1-S6.  

 
No. 𝜖𝑃−𝑁𝑃  𝜖𝑁𝑃−𝑁𝑃 D 𝑵𝑵𝑷 𝑵𝒑𝒐𝒍𝒚𝒎𝒆𝒓 

1 0.4 1.5 2 8 35 

2 0.8 1 3 12 40 

3 0.4 1 4 8 30 

4 0.4 0.2 2 8 30 

5 0.8 1.5 3 8 35 

6 0.2 0.2 4 12 25 

7 1.5 0.1 5 12 30 

8 0.6 1 2 12 35 

9 0.2 0.4 3 12 30 

10 0.8 0.4 3 8 25 

11 0.2 0.8 4 12 40 

12 0.4 0.8 2 12 25 

13 0.6 0.4 2 12 40 

14 0.4 0.6 3 8 40 

15 1.5 0.1 5 8 30 

16 0.8 1.5 3 12 35 

17 0.4 0.4 4 12 35 

18 0.2 2 4 12 30 

19 0.8 1 3 8 40 

20 1 0.1 5 12 30 

21 0.1 0.1 5 8 30 

22 0.8 0.4 3 12 25 
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23 0.6 0.8 3 8 30 

24 0.8 0.6 2 12 30 

25 0.2 0.8 4 8 40 

26 0.8 0.6 2 8 30 

27 1 2.5 4 8 30 

28 0.4 0.8 2 8 25 

29 1 0.8 2 12 40 

30 0.4 0.4 4 8 35 

31 0.8 2.5 2 8 40 

32 0.8 2.5 2 12 40 

33 0.1 0.1 5 12 30 

34 0.4 0.6 3 12 40 

35 1 1.5 5 12 25 

36 0.8 0.2 4 8 40 

37 0.05 0.1 5 8 30 

38 0.2 0.6 2 12 35 

39 1 0.1 5 8 30 

40 0.4 1 4 12 30 

41 1 1 4 8 25 

42 0.2 1 3 12 25 

43 0.4 1.5 2 12 35 

44 0.8 0.8 4 12 35 

45 0.6 0.4 2 8 40 

46 0.4 2 2 8 40 

47 0.6 2 4 12 30 

48 1 0.2 2 12 25 

49 1 1 4 12 25 

50 0.2 1.5 5 12 25 

51 1 1.5 5 8 25 

52 0.2 1.5 5 8 25 

53 0.2 0.4 3 8 30 

54 0.6 0.8 3 12 30 

55 1 0.4 4 8 30 

56 0.2 0.6 2 8 35 

57 1 0.8 2 8 40 

58 1 0.2 2 8 25 

59 1 0.4 4 12 30 

60 0.4 2 2 12 40 

61 0.6 1 2 8 35 

62 0.6 0.6 4 12 25 

63 1 2.5 4 12 30 

64 1 0.6 3 12 35 

65 1 0.6 3 8 35 

66 0.8 0.8 4 8 35 

67 0.2 1 3 8 30 

68 0.4 0.8 2 12 40 

Table 2: Compositional parameters of data (training data) on which the model has been trained. 
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5. Comparison of models’ performance  

 

For each model framework, we have conducted three cross-validations. The performance 

of the best model is shown in Figure 7 of the articles. Here we compare the prediction error 

of all the models.  We note that the MSE of the nanoNET is negligible in comparison to 

other models.  

 

  

 

Figure S8: Comparison of models' performance in predicting RDF of nanoparticles in a polymer matrix based on the 

composition parameters. The MSE of the nanoNET is 0.06.      


