
1

Supplementary Information (SI)

nanoNET: Machine Learning Platform for Predicting Nanoparticles

Distribution in a Polymer Matrix

Kumar Ayush, Abhishek Seth and Tarak K Patra*

*Corresponding Author: E-mail: tpatra@iitm.ac.in

Department of Chemical Engineering, Center for Atomistic Modeling and Materials Design

and Center for Carbon Capture Utilization and Storage, Indian Institute of Technology

Madras, Chennai TN 600036, India

1. Regression model for directly mapping a composition vector to the corresponding

RDF

a) Random Forest (RF)

Figure S1: Comparison of actual RDF and predicted RDF for 12 different compositions in case of

a RF model that directedly correlates composition vector to the RDF function. The Composition

parameters are the same as tabulated in Table S1.

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2023

mailto:tpatra@iitm.ac.in

2

We use the random forest (RF) algorithm to develop a regression model between the 5-

dimensional composition vector and 100-dimensional RDF. The RF regressor model employs

several important hyperparameters, including max_depth, min_samples_leaf, and

min_samples_split. We adjust these parameters to control the complexity of the decision trees

in the RF and to prevent the overfitting to the training data. The max_depth specifies the

maximum depth of each decision tree in the forest. Setting a maximum depth helps to prevent

the tree from becoming too complex and overfitting to the training data. We have selected the

max_depth= 4 in this model, indicating that each decision tree will have a maximum depth of

four levels. The min_samples_leaf specifies the minimum number of samples required to form

a leaf node in the decision tree. Setting a higher min_samples_leaf can prevent the tree from

overfitting to noisy or irrelevant data points. In this model, the min_samples_leaf is set to 5,

indicating that each leaf node in the decision tree must contain at least five samples. Finally,

the min_samples_split specifies the minimum number of samples required to split an internal

node in the decision tree. Setting a higher min_samples_split can prevent the tree from

overfitting to small or insignificant subsets of the data. We have set min_samples_split= 3,

indicating that a node must have at least 3 samples to be split into two child nodes. Overall,

these hyperparameters help to control the complexity of the decision trees and prevent

overfitting, leading to a more accurate RF regressor model. The choice of this set of parameters

is made based on many initial trials in order to achieve the optimal performance. The

performance of the RF model is shown in Figure S1. It suggests a significant mismatch between

an actual RDF and RF-predicted RDF.

3

b) Extreme Gradient Boosting (XG-Boost)

We use XG-Boost regressor, a powerful machine learning model, to build a regression model

between the 5-dimensional compositional input vector and the 100-dimensional RDF. In this

model, the learning_rate, max_depth, and n_estimators are the hyperparameters. The

learning_rate, which is defined as the step size of the gradient descent optimization process, is

set to be 0.1. The max_depth hyperparameter is set to be 5, which controls the maximum depth

of each decision tree. We set the n_estimators to be 51, which is the number of decision trees

in the model. Finally, we use mean squared error as the objective function of the model, which

is minimized during the training. The performance of the XG-Boost model is shown in Figure

S2.

Figure S2: Comparison of actual RDF and predicted RDF for 12 different compositions in case of an XG

Boost model that directedly correlates composition vector to the RDF function. The Composition

parameters are the same as tabulated in Table S1.

4

c) Deep Neural Network (DNN)

We implement a sequential neural network model for the regression analysis within the Keras

opensource package. The objective is to create a correlation between a 5-dimensional input

compositional vector and 100-dimensional output RDF vector. The model architecture consists

of three hidden layers each with the rectified linear unit (ReLU) activation function. The first

hidden layer has 200 neurons, the second and third layers each have 100 neurons. The output

layer has 100 neurons with the linear activation function appropriate for the regression task.

We use the Adam optimizer with a learning rate of 0.0001 with the mean squared error as the

loss function. We train the model for 1000 epochs during which weights between connecting

neurons are optimized. We chose this set of parameters based on several trials to optimize the

model performance. The performance of the best DNN model is shown in Figure S3.

Figure S3: Comparison of actual RDF and predicted RDF for 12 different compositions in case of a DNN

model that directedly correlates composition vector to the RDF function. The Composition parameters are the

same as tabulated in Table S1.

5

d) Support Vector Regression (SVR)

The support vector regression (SVR) model is a powerful machine learning technique used

for predicting continuous output values. We implement the SVR model using the scikit-

learn library. We use three hyperparameters to fine-tune the model performance: C, gamma,

and kernel. The C parameter controls the regularization strength of the model and adjusts

the trade-off between achieving a large margin and minimizing the prediction error. The

gamma parameter determines the width of the radial basis function (RBF) kernel and

controls the smoothness of the decision boundary. The kernel parameter specifies the type

of kernel function used for the SVM model, and we have used the polynomial kernel in this

study. We have set the value of the C parameter to 3. The MultiOutputRegressor module

has been used to perform multi-output regression, which helps us predict multiple

continuous variables simultaneously. We chose hyperparameters based on previous

research and empirical experiments, and their values have been selected through trial and

error to achieve optimal performance on the given dataset.

Figure S4: Comparison of actual RDF and predicted RDF for 12 different compositions in case of a SVM

model that directedly correlates composition vector to the RDF function. The Composition parameters are

same as tabulated in Table S1.

6

2. Dimensionality reduction of RDF

As discussed in the main text, there are various methods available for feature extraction and

dimensionality reduction. Here, we test the performance of principal component analysis

(PCA) and deep neural network (DNN) autoencoder for reducing the dimension of

nanoparticles RDF in a polymer matrix. Upon dimensionality reduction, we build an RF model

to correlate the composition vector of a PNC and the corresponding latent space representation

of an RDF. The performance of these two approaches is discussed below.

a) PCA-based dimensionality reduction

The PCA model is used to reduce the dimensionality of RDF data by extracting a new set of

uncorrelated variables called principal components. The main hyperparameter of PCA is the

number of principal components to retain, which directly affects the amount of variance in the

data that is preserved. We build the PCA model with 16 principal components. The 16-

dimensional latent space gives the optimal performance. The reconstructed RDF image shows

Figure S5: PCA is used to map RDFs to a latent space of dimension 12, and then RF is used to correlate composition

matrix and latent space representation. The performance of this ML pipeline is shown here for 12 unknown

compositions. The Composition parameters are same as tabulated in Table S1.

7

a close resemblance to the original RDF image, indicating a good match. We then build a RF

model to find the correlation between a 5-dimensional compositional input vector and a 16-

dimensional reduced vector of an RDF image. We primarily focusing on two key parameters

during the regression: the number of decision trees and the size of the feature subsets used

when splitting a node. We perform a detailed analysis of the model's performance with varying

numbers of trees, and our results indicate that using 100 decision trees results in the lowest

prediction error. The prediction of RF is then mapped to the actual RDF using inverse

transform method. We utilize the scikit-learn library for this model building. The performance

of such a regression model is shown in Figure S5.

b) Deep neural network (DNN)-based dimensionality reduction:

We use a DNN for RDF dimensionality reduction. The architecture of the DNN autoencoder

creates a latent space of dimension 10 for a RDF vector of dimension 100. The decoder part of

the encoder consists of four hidden layers. The number of nodes in the successive dense layers

of the DNN is 1000, 500, 100, and 10, respectively. The topology of the decoder is a mirror

Figure S 6: DNN autoencoder is used to map RDFs to a latent space of dimension 10, and then RF is used to correlate

the composition matrix and latent space representation of a PNC. The performance of this ML pipeline is shown here

for 12 unknown compositions. The Composition parameters are the same as tabulated in Table S1.

8

image of the encoder. Therefore, the number of nodes in the successive hidden layers of the

decoder is 10, 100, 500, and 1000 respectively. The input and output of the autoencoder is of

dimension 100, which is same the RDF vector. The ReLU activation function is used to

activates all the neurons of all the hidden layers. We use the Adam optimizer with a learning

rate of 0.0003. The mean squared error (MSE), which measures the difference between the

predicted and actual values of the output, is considered as the loss function of the model. We

train the model for 1000 epochs with shuffling of the training data after each epoch. The choice

of the hyperparameters is based on several trials in order to optimize the performance of the

model. Subsequently, we build a RF regression model between a 5-dimensional compositional

input vector and a 10-dimensional latent vector. The two main parameters that we focus on are

the number of decision trees and the size of the subsets of features selected randomly when

splitting a node. We conduct a thorough analysis of the model's performance with different

numbers of trees and have found that utilizing 400 decision trees leads to the lowest prediction

error. We build the RF regression model using the scikit-learn library. The performance of the

DNN-based RF model is shown in Figure S6.

9

3. Dimension of the Latent Space of the nanoNET pipeline:

We carry out a systematic analysis to identify the appropriate dimension of the latent space of

RDFs, which can be correlated to the composition vector via a random forest regressor. As

shown in Figure S7, the latent space of dimension 8 appears to be the most efficient.

Figure S7: Performance of random forest regressor. R2 score for training and test data for models that build a correlation between

the composition vector and latent space vector for different dimensions of the latent space.

10

4. Composition Parameters of the PNCs (Training and Test Data)

Here, 𝜖𝑃−𝑁𝑃 is the interaction parameter between the polymer and nanoparticle,
𝜖𝑁𝑃−𝑁𝑃 is the interaction parameter between a pair of nanoparticles, D is diameter of a

nanoparticle, 𝑵𝑵𝑷 is the number of nanoparticles present in the polymer matrix, and
𝑵𝒑𝒐𝒍𝒚𝒎𝒆𝒓 is the number of monomers in a polymer chain.

No. 𝜖𝑃−𝑁𝑃 𝜖𝑁𝑃−𝑁𝑃 D 𝑵𝑵𝑷 𝑵𝒑𝒐𝒍𝒚𝒎𝒆𝒓

1 (Fig. 7a) 0.6 1.5 5 8 25

2 (Fig. 7b) 0.2 0.2 4 8 25

3 (Fig. 7c) 0.6 2 4 8 30

4 (Fig. 7d) 0.6 0.6 4 8 25

5 (Fig. 7e) 0.6 0.2 3 8 35

6 (Fig. 7f) 0.2 2 4 8 30

7 (Fig. 7g) 0.2 1 3 8 25

8 (Fig. 7h) 0.6 0.2 3 12 35

9 (Fig. 7i) 0.05 0.1 5 12 30

10 (Fig. 7j) 0.6 1.5 5 12 25

11 (Fig. 7k) 0.8 0.2 4 12 40

 12 (Fig. 7l) 0.4 0.2 2 12 30

Table 1: Compositional parameters of data (test data) on which performance of the model has been

evaluated. RDF predictions for 12 PNCs are shown in Figure 7 of the main article. These parameters

are also used in Figures S1-S6.

No. 𝜖𝑃−𝑁𝑃 𝜖𝑁𝑃−𝑁𝑃 D 𝑵𝑵𝑷 𝑵𝒑𝒐𝒍𝒚𝒎𝒆𝒓

1 0.4 1.5 2 8 35

2 0.8 1 3 12 40

3 0.4 1 4 8 30

4 0.4 0.2 2 8 30

5 0.8 1.5 3 8 35

6 0.2 0.2 4 12 25

7 1.5 0.1 5 12 30

8 0.6 1 2 12 35

9 0.2 0.4 3 12 30

10 0.8 0.4 3 8 25

11 0.2 0.8 4 12 40

12 0.4 0.8 2 12 25

13 0.6 0.4 2 12 40

14 0.4 0.6 3 8 40

15 1.5 0.1 5 8 30

16 0.8 1.5 3 12 35

17 0.4 0.4 4 12 35

18 0.2 2 4 12 30

19 0.8 1 3 8 40

20 1 0.1 5 12 30

21 0.1 0.1 5 8 30

22 0.8 0.4 3 12 25

11

23 0.6 0.8 3 8 30

24 0.8 0.6 2 12 30

25 0.2 0.8 4 8 40

26 0.8 0.6 2 8 30

27 1 2.5 4 8 30

28 0.4 0.8 2 8 25

29 1 0.8 2 12 40

30 0.4 0.4 4 8 35

31 0.8 2.5 2 8 40

32 0.8 2.5 2 12 40

33 0.1 0.1 5 12 30

34 0.4 0.6 3 12 40

35 1 1.5 5 12 25

36 0.8 0.2 4 8 40

37 0.05 0.1 5 8 30

38 0.2 0.6 2 12 35

39 1 0.1 5 8 30

40 0.4 1 4 12 30

41 1 1 4 8 25

42 0.2 1 3 12 25

43 0.4 1.5 2 12 35

44 0.8 0.8 4 12 35

45 0.6 0.4 2 8 40

46 0.4 2 2 8 40

47 0.6 2 4 12 30

48 1 0.2 2 12 25

49 1 1 4 12 25

50 0.2 1.5 5 12 25

51 1 1.5 5 8 25

52 0.2 1.5 5 8 25

53 0.2 0.4 3 8 30

54 0.6 0.8 3 12 30

55 1 0.4 4 8 30

56 0.2 0.6 2 8 35

57 1 0.8 2 8 40

58 1 0.2 2 8 25

59 1 0.4 4 12 30

60 0.4 2 2 12 40

61 0.6 1 2 8 35

62 0.6 0.6 4 12 25

63 1 2.5 4 12 30

64 1 0.6 3 12 35

65 1 0.6 3 8 35

66 0.8 0.8 4 8 35

67 0.2 1 3 8 30

68 0.4 0.8 2 12 40

Table 2: Compositional parameters of data (training data) on which the model has been trained.

12

5. Comparison of models’ performance

For each model framework, we have conducted three cross-validations. The performance

of the best model is shown in Figure 7 of the articles. Here we compare the prediction error

of all the models. We note that the MSE of the nanoNET is negligible in comparison to

other models.

Figure S8: Comparison of models' performance in predicting RDF of nanoparticles in a polymer matrix based on the

composition parameters. The MSE of the nanoNET is 0.06.

