
Supporting Information 

 

Non-Rouse Behavior of Short Ring Polymers in Melts by Molecular 

Dynamics Simulation 

 

 

 

Yedi Lia, b, Pu Yaoa, b, Hongxia Guo*, a, b 

 

 

a Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer 

Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, 

Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China. 

 

b University of Chinese Academy of Sciences, Beijing 100049, China. 
 
  

 

*Corresponding author. Tel: +86 10 82618124, fax: +86 10 62559373.  

E-mail: hxguo@iccas.ac.cn 

 

 

 

 

 

 

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2023

mailto:hxguo@iccas.ac.cn


A Concise Summary for the Density-fluctuation-based and the Hydrodynamic-

interaction-based Mode-coupling theory 

Following Ref.1, for the density-fluctuation-based MCT (dMCT), the Laplace 

form of the center-of-mass velocity autocorrelation function (c.m. VAF) (𝐶𝑐.𝑚.(𝑡)) is 

realted to the memory kernel Γ(t): 

ℒ(𝐶𝑐.𝑚.(𝑡)) = 𝜐𝑇
2𝑁−1/[𝑝 + ℒ(Γ(t))], (S1) 

where 𝑣𝑇
2 = 𝑘𝐵𝑇/𝑚. Γ(t) from mode-coupling theory is: 

Γ(t) ≡
𝜌𝑣𝑇

2

3
∫

𝑑3𝑞

(2𝜋)3 𝑞2[�̃�(𝑞)]2𝐹(𝑞, 𝑡)𝑆(𝑞, 𝑡), (S2a) 

�̃�(𝑞) ≡
1

𝜌
(

1

𝐹(𝑞)
−

1

𝑆(𝑞)
), (S2b) 

𝐹(𝑞, 𝑡) ≡
1

𝑁
〈𝜌0(−𝑞, 0)𝜌0(−𝑞, 𝑡)〉. (S2c) 

Under the assumptions of Rouse model and random phase approximation, scaling 

equations of 𝐹(𝑞, 𝑡) and S(𝑞, 𝑡) are deduced (not shown) and then the prediction for 

Γ(t) when t is shorter than the Rouse time is given as: 

Γ(t) =
𝜌𝑣𝑇

2

3
∫

𝑑3𝑞

(2𝜋)3 𝑞2𝜑(𝐴𝑞4𝑡)𝜎(𝐴𝑞4𝑡) ≈ 0.54(𝑊𝑡)−5/4 𝑣𝑇
2

𝜌𝑏5. (S3a) 

𝑊 = (
ℎ0

𝑏2)
2

/𝑡. (S3b) 

where W is a time constant determined by the sub-diffusion of the monomer MSD 

ℎ0 =
1

6
〈[𝑟𝑖(𝑡) − 𝑟𝑖(0)]2〉 . Finally, substituting Eq. (S3) into Eq. (S1), we get the 

theoretical prediction for 𝐶𝑐.𝑚.(𝑡) from dMCT: 

𝐶𝑐.𝑚.(𝑡) ≈ −
(𝑊𝑡)−

5
4

𝑁

𝑏2𝑊

𝜌𝑏3 × 0.037. (S4) 

The hydrodynamic interaction-based MCT (hMCT) predicts that c.m. VAF is quite 

simple: 

      𝐶𝑐.𝑚.(𝑡) ⋍
1

3𝜌𝑁
∫

𝑑𝑞3

𝑁(2𝜋)3 𝑆(𝑞, 𝑡)[2𝐶𝑇(𝑞, 𝑡) + 𝐶𝐿(𝑞, 𝑡)]. (S5) 

Here, 𝐶𝑇(𝑞, 𝑡) and 𝐶𝐿(𝑞, 𝑡)  are, respectively, the longitudinal and the transverse 

current correlation functions indicative of the response to external forces. For the 

Langevin dynamics, the motion equation of polymers takes the frictional term into 

account so that the transverse current correlation functions also involve the friction term. 



When the Langevin friction γ is not too high, one has: 

𝜕𝐶𝑇(𝑞,𝑡)

𝜕𝑡
 =  −

𝑞2

𝜌
∫ 𝑑𝑡′𝐸(𝑡′)

𝑡

0
𝐶𝑇(𝑡 − 𝑡′) − 𝛾𝐶𝑇(𝑞, 𝑡). (S6) 

E(t) is the shear relaxation modulus independent of 𝑞 for the time longer than the 

monomer time 𝑡1  but shorter than the Rouse time  𝑡𝑅 , which is predicted by the 

classical Rouse model as: 

E(t) ⋍
ρmυT

2

√2π2Wt
 , 𝑡1 ≪ 𝑡 ≪ 𝑡𝑅, (S7) 

When the time is longer than the Langevin relaxation time 𝛾−1, applying a Laplace 

transform and an inverse Laplace transform, 𝐶𝑇(𝑞, 𝑡) is: 

𝐶𝑇(𝑞, 𝑡)  =  −
𝐴𝜐𝑇

2

𝛾�̅�2
𝑞4𝐶1(𝐴𝑞4�̅�−2𝑡), (S8a) 

�̅� =
𝜋𝑏2𝑊𝛾

12𝜐𝑇
2 , (S8b) 

ℒ(C1(t)) = C1(p) = −
√2p

√2p+1
, (S8c) 

𝐶1(𝑦) =
1

√2𝜋𝑦
−

1

2
𝑒𝑟𝑓𝑐𝑥(√𝑦/2), (S8d) 

where 𝑒𝑟𝑓𝑐𝑥(𝑦) = 𝑒𝑦2 2

√𝜋
∫ 𝑒−𝑢2∞

𝑦
𝑑𝑢  is one of the error functions. Under the 

condition of the small Langevin friction 

( corresponding  to the dressed friction coefficient �̅� of �̅� ≪ 1 ) which 

encompasses the momentum-conserving dynamics, some simplified conditions hold. 

As regards 𝑆(𝑞, 𝑡) of unentangled polymer melts, one should apply the results of the 

Rouse model, which shows a scaling of the form 𝑆(𝑞, 𝑡) = 𝑆(𝑞)𝜑(𝐴𝑞4𝑡). Then, the 

decay of 𝐶𝑐.𝑚.(𝑡)  is dominated by 𝐶𝑇(𝑞, 𝑡) , while the longitudinal component 

𝐶𝐿(𝑞, 𝑡)  can be negligible and static structure factor 𝑆(𝑞)  can take place of the 

dynamic structure factor. Then, when t ≫ 𝛾−1 we get: 

𝐶𝑐.𝑚.(𝑡) = −
𝑏2𝑊2�̅�−3

4√6𝜌𝑏3𝑁7/2
𝑓1(𝜋�̅�−2𝑊𝑡/(4𝑁2)), (S9a) 

𝑓1(𝑦) = ∫ 𝑑𝑥𝑥6𝑓(𝑥2)𝐶1(𝑦𝑥4)
∞

0
. (S9b) 

The form factor function 𝑓(𝑥) for Gaussian linear and ring polymers is defined in Eqs. 

(4) and (5), respectively. The difference of 𝑓(𝑥)  only affects the magnitude of 

c.m.VAF but not the scaling relation. Thus, as Ref. 1 predicts, c.m. VAF of both linear 



and ring polymer melts with small Langevin friction scales as 𝑡−5/4 for short time and 

𝑡−3/2 for long time. For simplicity, Eq. (S9) can be rewritten as: 

𝐶𝑐.𝑚.(𝑡) = −A𝑓1(tμ), (S10a) 

A =
𝑏2𝑊2�̅�−3

4√6𝜌𝑏3𝑁7/2
, (S10b) 

μ = 𝜋�̅�−2𝑊/(4𝑁2), (S10c)  

   Static Single-chain Structure Factor of all-crossing polymer chains 

   

 

Figure S1 Kratky representation of 𝑆(𝑞)𝑅𝑔
2𝑞2/𝑁 versus 𝑞𝑅𝑔 for the all-crossing (a) ring 

and (b) linear chains with different chain length. Also, Casassa equation and Debye function 

are shown by black solid curves for comparison. 
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  Center-of-mass Mean-square Displacement 

  

Non-Gaussian Parameter (NGP) 

 

Figure S2 Center-of-mass mean-square displacement multiplied by the chain length N for 

(a) non-crossing and (b) all-crossing ring and linear polymers. Three scaling laws are 

indicated by straight black lines for comparisons. 
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Figure S3 Non-Gaussianity parameter of center of mass α2(t) for non-crossing (a) ring 

and (b) linear polymer melts. 
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The Instantaneous Temporal Exponent 

 

 

Figure S4 semi-log plot of the temporal power law scaling exponent 𝜅 for the c.m. MSD 

data versus reduced displacement 𝑔𝑐.𝑚(𝑡)0.5/𝑅𝑔 for all-crossing ring and linear chains with 

different chain lengths. The black dashed straight line indicates the displacement that the 

polymer chain moves over a distance of the radius of gyration. 
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     The Center-of-mass Velocity Autocorrelation Function 
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Figure S5 Comparison of the center-of-mass velocity autocorrelation function between 

simulation data (line+symbol), prediction by dMCT (eqn.(S4), dash lines) and hMCT 

(eqn.(S9), solid lines) for linear and ring polymer melts with N=50, 61,83 and 151 with 

friction constant γ = 0.5. 
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