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1. Fabrication of 2D liquid crystal foams 
 
Our research involved creating 2D liquid crystal foams. We conducted experiments to 
determine how the thickness of the container affects the foam's structure, as shown in 
Figure S1. We used the same airflow rate (1 mL/min) and containers of varying thicknesses 
(2 mm, 4 mm, 6 mm, and 8 mm) to create the foam. Our findings revealed that a container 
thickness of 2 mm is the threshold required to produce 2D foams (a one-layer of bubbles). 
Any container with a greater thickness will result in multiple layers and the formation of 3D 
LC foams, which is not the focus of this study.  
 

 
 

Figure S1. Effect of the container thickness on the structure of LC foam. Front view (left) and 
side view (right) of LC foams fabricated under the airflow rate of 1 mL/min in rectangular 
containers of thickness: (a) 2 mm, (b) 4 mm, (c) 6 mm, and (d) 8mm. 
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2. Data analysis 
 
Each sample is analyzed vertically from bottom to top. The foam structure is divided into 4 
different sections (Bins), as shown in Figure S2-a:   
 
·     Bin 1 in the black box, located approximately 18 mm above the base of the container. 
·     Bin 2 in the red box, located approximately 27 mm above the base of the container. 
·     Bin 3 in the blue box, located approximately 37 mm above the base of the container. 
·     Bin 4 in the pink box, located approximately 47 mm above the base of the container. 
 
To analyze our data, we utilize ImageJ, an image processing software. We start by adjusting 
the pictures into 8-bit black and white images. Next, we use the Particle Analysis tool to 
identify and extract specific cell areas: the black regions inside the cells in Figure S2-a. It's 
important to note here that our measurements exclude the cells near the boundary to 
prevent any inaccuracies in the data analysis.  
 

 

Figure S2: Image analysis of the foam using ImageJ software. (a) Each sample is divided 
vertically into 4 Bins from bottom to top. (b) An example showing the measurement of the 
cell numbers and areas using ImageJ.   

3. Density profile of foam under gravity 
 
In this section, we derive the expression of the density profile of foams under gravity using 
the case of simple fluids, adopted from the reference1. For a foam cell, the pressure 
difference across a single surface of a Plateau border is given by Laplace law: 
 

∆𝑃 = 𝑝! −	𝑝" =	
g
𝑟 

where 𝑝! is the pressure of the gas, which considered constant, 𝑝"  is pressure of the liquid, g 
is the surface tension between the fluid and gas, and r is the radius of the Plateau border. 



Under equilibrium, the pressure inside the liquid must follow the conventional hydrostatic 
law, where the pressure changes as a function of the vertical position 𝑥 as: 
 

𝑝" = 𝑝# + 	r𝑔(𝑥 − 𝑥#), 
 
where 𝑝# is the liquid pressure at the top layer of the foam (𝑥 = 𝑥#), r is the density of the 
fluid, and 𝑔 is the gravitational acceleration. Applying the Laplace law, we can determine the 
radius 𝑟(𝑥) of the Plateau border as a function of the vertical position as:  
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Here, we assume the bubble as a circle with an outer radius R and inner radius 𝑟. Since the 
liquid fraction describes the concentration of the liquid content with the bubble, the liquid 
fraction of 2D foam can be estimated as1: 
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where, �̃� is a geometric parameter, which depends on the structure of the 2D foam. Now, 
we can present the Plateau border radius 𝑟 in terms of the liquid fraction 𝜑 and the bubble 
volume (with radius R). This leads to the expression for the liquid fraction as a function of 
height as: 
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As mentioned earlier, the constant 𝑝# is the liquid pressure at the top layer of the foam. To 
determine the value of 𝑝#, we need to consider the bottom layer of the foam in contact 
with the reservoir at 𝑥2, where the liquid fraction 𝜑 reaches the wet foam limit 𝜑-+3  : 
 

𝜑(𝑥2) = 	𝜑-+3. 
 
We apply this condition at 𝑥 = 𝑥2. We obtain the expression for the liquid pressure at the 
top layer as: 
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From this equation we get: 
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We substitute this expression into the liquid fraction function 𝜑(𝑥), and eliminate the 
pressure terms 𝑝!	and	𝑝#. A new liquid fraction function that depends on the vertical 
position 𝑥 can be determined: 
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We simplify this equation and obtain:  
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or 
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where ∆𝑥 = 𝑥2 − 𝑥. This expression of liquid fraction is used to determine if the density 
profile of smectic foams acts similarly to that of simple fluid foams, as described in the main 
manuscript. 
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