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Additional experimental materials and methods

Materials
Glycerol monomethacrylate (GMA) was kindly donated from GEO Specialty Chemicals (U.K.), 4-Cyano-4-(2-
phenylethane sulfanylthiocarbonyl) sulfanylpentanoic acid (PETTC) was prepared in-house using previously

published methods.? 2

Synthesis of poly (glycerol monomethacrylate) (PGMA) via RAFT solution polymerisation

PGMA was synthesised by RAFT polymerisation in ethanol at 70 °C and has been widely reported in the literature
(Figure S1).3 GMA monomer (20 g, 124 mmol) and PETTC RAFT agent (0.8476 g, 2.5 mmol) were weighed into a
250 mL round-bottomed flask and purged with N, for 30 min. 4,4-azobis(4-cyanovaleric acid) (ACVA) initiator
(0.14 g, 0.5 mmol, PETTC/ACVA molar ratio = 5:0) and anhydrous ethanol (20 g, previously purged with N, for 20
min) were then added, and the resulting yellow solution was degassed for a further 15 min while stirring to form a
homogeneous solution. The flask was subsequently sealed and immersed in an oil bath set at 70 °C.3 After 120 min,
the polymerisation was quenched by immersion in an ice bath and opening to air. The final degree of
polymerisation (DP) was 58, as determined by H-NMR analysis (Figure S2) using D,0. The polymer was purified by
dialysis (MWCO = 3500 g mol?) against deionised water and freeze-dried to form a yellow powder. DMF GPC
analysis indicated an M, of 4700 g mol! and an M,,/M,, of 1.17 (Figure S3).

Preparation of PGMA-PHPMA-x% GO nanocomposite worm gels by physical mixing

The 20 % w/w Gsg-H179 copolymer worm gel and the GO dispersion (~15 mg mlt) were cooled to approximately 5
°C until the copolymer dispersion was in a free-flowing state. Appropriate quantities of the pre-cooled GO
dispersion and/or deionised water were added to the cooled copolymer dispersion. The samples were mixed gently

for 10 s in cooled water using a vortex mixer and subsequently allowed to return to room temperature (Figure S6).

1H NMVR spectroscopy. 'H NMR spectra were recorded on a Bruker Avance Il 400MHz spectrometer with 128 scans

averaged per spectrum at 25 °C.

Gel permeation chromatography (GPC). 0.50 % w/w polymer solution was prepared in DMF containing DMSO (10

uL mL?) as a flow-rate marker. GPC measurements were conducted using HPLC-grade DMF eluent containing 10
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mM LiBr at 60 °C at a flow rate of 1.0 mL min~. An Agilent Technologies 1260 Infinity GPC / SEC system fitted with
two Polymer Laboratories PL gel 5um Mixed C columns connected in series, and a refractive index detector was

used to assess molar mass distributions using polystyrene calibration standards.

Dynamic light scattering (DLS). A Malvern Zetasizer Nano ZS instrument was used to measure particle size. The
instrument is equipped with a He—Ne solid-state laser operating at 633 nm and detects back-scattered light at a
scattering angle of 173°. All size measurement data were averaged over three consecutive runs comprising thirteen

measurements each.

Atomic force microscopy (AFM). The GO dispersion was diluted to 0.1 % w/w and then 100 uL diluted GO
dispersion were then spin coated on a newly cleaved mica sheet at 1500 rpm for 30 seconds. AFM imaging was
performed on a Bruker Multimode 8 (Burker, USA). The dispersion were scanned in room temperature in ScanAsyst
(tapping) mode, using a ScanAsyst-Air probe with 70 Hz frequency and nominal spring content k, of 0.4 N m%. AFM
images were acquired at 512*512 pixels resolution over scanning ranging from 2*2 to 10*10 um. At a scan

frequency of 1 Hz and analysed with Gwyddion software.

Raman spectroscopy. Raman spectroscopy was been performed using a Horiba Scientific LabRAM HR Evolution
instrument using a He-Ne laser (wavelength 633 nm) with an edge filter, and a grid of 600 gr/mm. Samples were
cast and flattened on cleaned glass slides, and a 50x long working distance objective was used to focus the laser

on the samples with a laser power of 0.29 mW.



Supporting data tables

Table S1. Oscillatory rheology information of the GO containing composite worm gel.

Entry Composition of GO containing G’ of LVR CGT® G’ after Recovery
composite worm gel (kPa)? Cooling | Heatin temperature efficiency
(°C) g change cycle (%) ©
(°C) (kPa)

1 15% PGMA-PHPMA-2% GO 3.1+0.6 6 9 2.8+0.8 80.2
2 15% PGMA-PHPMA-4% GO 6.1+0.3 4 7 46+13 87.6
3 15% PGMA-PHPMA-6% GO 3.5+04 6 8 24+14 83.2
4 20% PGMA-PHPMA-2% GO 7.3%+0.8 3 2 7.3+0.6 92.5
5 20% PGMA-PHPMA-4% GO 20.5%£1.9 N/A 2 20.5+2.5 96.8
6 20% PGMA-PHPMA-6% GO 3.7+04 2 5 34+16 96.5
7 25% PGMA-PHPMA-2% GO 33.1+3.5 | N/A N/A 32.6+5.4 98.1
8 25% PGMA-PHPMA-4% GO 11.622.0 | N/A N/A 153+3.8 |983
9 25% PGMA-PHPMA-6% GO 9.7+1.1 N/A N/A 9.5+2.2 97.5

@LVR: Linear viscoelastic region
b CGT: Critical gelation temperature
¢ Recovery efficiency: Dividing the G’ of the last low strain (0.2%) by the G’ of the original low strain obtained by

the rheology shear-thinning recovery test.



Table S2. Tensile test information of the GO containing composite worm gel.

Entry | Composition of GO containing | Young’s modulus Fracture Toughness / Healing
composite worm gel / KPa strain / % KJ/mm3 efficiency
(%)

1 15% PGMA-PHPMA-2% GO 41.5+4.9 1.3+0.2 21.9+6.7 55.2
After healing 30.3+8.4 1.1+0.4 12.1+2.2

2 15% PGMA-PHPMA-4% GO 95.55+9.4 3.5+0.2 486.2+48.2 63.2
After healing 75.9+14.5 3.1+0.6 307.3+22.4

3 15% PGMA-PHPMA-6% GO 56.15+13.2 1.5+0.3 47.9+10.8 39.2
After healing 35.5¢17.5 1.2+0.7 18.8+4.9

4 20% PGMA-PHPMA-2% GO 105.3%7.2 4.2+1.4 844.1+86.4 96.1
After healing 93.7+12.4 4.2+¢1.1 811.5+96.7

5 20% PGMA-PHPMA-4% GO 356.4+22.2 7.5%¥1.3 10760.5+205 97.7
After healing 345.7+29.6 7.5+¢1.8 10510.3+279

6 20% PGMA-PHPMA-6% GO 54.5+13.1 2.1+0.5 125.2+18.4 90.8
After healing 48.7+15.2 2.1+0.5 113.7+19.1

7 25% PGMA-PHPMA-2% GO 446.7+14.4 13.4+4.8 | 41956.2+304 106.9
After healing 195.5+34.15 15.243.2 448611254

8 25% PGMA-PHPMA-4% GO 232.6+£27.8 9.4+1.5 11855.9+460 1233
After healing 149.5+44.5 10.6+2.7 | 146144601

9 25% PGMA-PHPMA-6% GO 185.5+10.4 8.6x1.1 6990.4+371 122.8
After healing 128.9+37.4 9.8+0.9 8585.5+268

2 Healing efficiency: Dividing the toughness of healed samples by the toughness of the original samples.
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Figure S1. Synthesis of PGMA, macromolecular chain-transfer agent (macro-CTA) via RAFT solution

polymerisation in ethanol at 70 °C.
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Figure S3. DMF GPC data recorded for PGMAsg macro-CTA and PGMAsg-PHPMA 7. M, and M,,/M,, values were

determined using polystyrene calibration standards.
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Figure S4. AFM images for (a) GO sheets after bath sonication; (b) GO sheets after probe sonication. (a) and (b)
height profiles corresponding to the large GO sheets and small GO sheets respectively. Samples were diluted to

0.1 % w/w before being deposited at room temperature.
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Figure S5. Dynamic light scattering studies for 0.1 % w/w GO dispersions after probe sonication. The GO flake

equivalent diameter (Z-average) recorded at 25 °C after day 1, day 3, day 5 and day 8.
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Figure S6. Photograph taken at room temperature of 15% Gsg-H179-x% GO composite gels prepared via physical

mixing copolymer with GO at low temperature.
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Figure S7. Photographs taken at room temperature of (a) n% Gsg-H170-x% GO composite gels prepared via RAFT in

situ polymerisation (a and c) shortly after preparation, (b and d) after 6 months storage at room temperature.
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Figure S8. Angular frequency dependent storage modulus (G’) and loss modulus (G”) for (a) 15% w/w G-H-4% GO,
(b) 20% w/w G-H-4% GO and (c) 25% w/w G-H-4% GO based on copolymer. Measurements were recorded between
0.01 and 10 Hz at 0.2 % strain and 25 C.
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Figure S9. Raman spectra of GO, GO-PGMA-PHPMA prepared by physical mixing and GO-PGMA-PHPMA prepared

by in situ polymerisation.
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Figure S10. (a) Assigned NMR spectra recorded in CD30D for samples extracted during in situ polymerisation for a
PGMA:g-PHPMA 7 copolymer (sampling times 1h and 2h) and 15% Gsg-H179-4%GO0O, 20% Gsg-H170-4%GO and 25%

Gsg-H170-2%GO nanocomposite gels (sampling times 1h and 3h). (b) HPMA monomer conversion as a function of

time for these in situ RAFT polymerisations.
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Figure S11. 15% w/w G-H-4% GO, 20% w/w G-H-4% GO and 25% w/w G-H-2% GO after self-healing
adheres to various materials including glass, wood, plastic, metal and rubber.
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Figure S12. Tensile testing data for (a) 15 % (b) 20% and (c) 25% w/w Gsg-H170 copolymer worm gels (straight line:

original and dashed line: after self-healing) at room temperature.




(a) (b) (c)

6000 T T T T T
] 5000 -
5000 - .o - o -
© * g g sEla0" "
. 4000 4
9- 4000 1 1000 Ban 11000
- ® g
i — g = — © g & -
’ 3000 o ;| - o 3000 -
£ ® g 5=
i ] [0}
>~ 2000 o B 2000 -
o 1004 og? 100
1000 .
og 1000+
=
04 = _ —_ -
0 500 1000 1500 2000 - oL M W . 000 00 M |
Time/s 0 2 4 6 8 10 12 14 16 18 20 22 0 5 10 15 20 25
Temperature / °C Time /h

Figure S13. Rheology data for 15% Gsg-H170-2.0% GO composite gels prepared by low-temperature physical
mixing of copolymer and GO. (a) Shearing-thinning recovery experiments. G’ and G” were recorded continuously
with alternating small (y = 0.2%) and large (y = 100%) strain at 25 ‘C with an angular frequency of 10 rad s. (b)
Temperature-dependent oscillatory rheology studies. The temperature was varied from 25 °Cto 2 °Cto 25°Cin 1
°C steps with 3 minutes equilibration at each step. (c) Temperature-dependent oscillatory rheology studies
obtained for storage modulus (G’). The temperature was varied from 20 °Cto 2 °Cto 20 °Cs with 2 h
equilibration at each step. The final step with 12h equilibration at 20 °C. Measurements were conducted at an

angular frequency of 10 rad s and applied strain amplitude of 1.0 %.
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Figure S14. 3D printed international morse code (spelling ‘LOVE’) of 15 %, 20 % and 25 % w/w copolymer

nanocomposite worm gels after printing (left) and showing information loss for the 15 % and 20 % gels after

cooling for 2 h (right).
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Figure S15. 3D printed QR codes using 15 % w/W Gsg-H170-4% GO; 20% W/W Gsg-H170-4% GO and 25% Gsg-H170-2%
GO nanocomposite worm gels. Top row: images of QR codes after being held at 2 °C for 30 min. Bottom row:

images of QR codes being held at 2 °C for 60 min.

Figure S16. Digital photographs showing tensile testing sample preparation: (a) gel cast onto PTFE tape set into a
silicone mould; (b) gel transferred to testing card; (c) after gel fracture; (d) fractured gel transferred to mould; (e)

gel after being left at room temperature for 6 h; (f) healed gel transferred to testing card.
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