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Here we present a detailed account of the theoretical calculations that lead to the paper’s results.

Our study is based on a simple square-gradient density functional model of fluid adsorption in systems with short-
ranged forces near a wall situated in the z = 0 plane. We adopt a magnetic notation with local order-parameter m(r),
for which the free-energy functional is written
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where ¢(m) is a double-well bulk potential and ¢;(m) = ¢m?/2 — hym is the surface interaction, which couples to
the magnetisation at the wall m; via a surface enhancement ¢ and a surface field hy. For simplicity, we assume an
Ising symmetry denoting the bulk spontaneous magnetization mg and x = 1/, the inverse of the bulk correlation
length. We begin by supposing that the bulk magnetic field is A = 0~ so that the bulk magnetization at subcritical
temperatures takes the value —mg. Minimizing F[m], assuming translational invariance along the wall, yields the
Euler-Lagrange equation

m"(z) = ¢'(m) (2)

which has a first integral that determines the equilibrium magnetization profile m(z):

m'(z) = £4/2(¢(m) — ¢(mo)) (3)

together with the boundary condition m’(0) = ¢my — hy . The =+ signs apply for the cases m; < —mg and m; > —mg
respectively, to which we shall return shortly. The elegant graphical solution (or Cahn construction [1]) based on the
well-known analogy with the mechanical conservation of energy [2], determines both the equilibrium profiles and the
Nakanishi-Fisher global surface phase diagrams [3].

Here, we focus on the properties of the correlation function G(r,r’) = (m(r)m(r’)) — m(z)m(z’) which we study via
its transverse Fourier transform G(z,2’;q), where q is a 2D wavevector parallel to the wall with modulus ¢. This
correlation function satisfies the inhomogeneous Ornstein-Zernike equation [2, 4] which, for our square-gradient model,
reduces to

(L+q°)G(z,25q) = 6(z—2) (4)
where
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together with the boundary condition 9,G(z,2’;¢)|.=0 = ¢G(0, 2’), and we have set kT = 1. This is similar to the
equation for the propagator in simple quantum mechanics and has an analogous spectral expansion
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with normalised wavefunctions satisfying the Shrodinger-like equation
Ly (2) = Epp(2) (7)

together with boundary conditions ], (0) = ¢, (0) and %, (c0) = 0. In general, the sum (6) contains both bound
states, for which FE,, < k2, and a continuum of scattering states with higher energies FE, > 2.



For the ”m?*” potential
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where t = T.—T and u > 0, the profiles following from (3) are given explicitly by the simple hyperbolic functions
({—=)

K
mg tanh 5 for mq > —mg

m(z) = 9
(2) oz 4 70) (9)

—myg coth for mi < —mg

where x = V2t and mg = \/t/u. Defining the parameter 7 = my/mg, or equivalently 7 = tanh %e for 1>7> -1
and 7 = —coth %52 for 7 < —1 allows us to link the familiar Cahn construction with the eigenvalue spectrum over
the whole range of allowed equilibrium, metastable and unstable thin film profiles, and is related to ¢ and hy via the
simple quadratic relation
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determining the corresponding values of ¢ and zg.

The bound state eigenfunctions are given explicitly by
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where f(z) = 2% = 2\/1 - E, & v+ 1— 3E, &, with corresponding eigenvalues satisfying
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which shows a 2D/3D crossover (a non-thermodynamic singularity) when the ground-state eigenvalue reaches the
value Ey = k2, yielding the following equation for the location of the crossover T:

kT(T2—=1) = ¢ <Tf - ;) (13)

Note that, for the ”m*” potential (8), the lines of critical and first-order wetting occur along
1 = \3/2 1 - \3/2 .
5 <62+1+2h1) -3 (62+1—2h1) ~3Eh = 1 (14)

where ¢ = ¢/k and hi = hi/kmg. For ¢ > 0, a special solution of this is ¢mg = hq, corresponding to the line of
critical wetting. Therefore, the intersection of the lines of dimensional reduction and first-order wetting occurs when

Tw = Tx (15)

which determines the value of ¢;. Using (10), (13) and (14) yields the numerical result

cy ~ —0.3375 K (16)
Finally, we note that the Cahn construction determines that, for ¢ < 0, the adsorption of the microscopic wetting
layer is zero when hy = —cmyg, which from (14) occurs for the point on the line of first-order wetting transitions at
which

c=(1-2Y3k (17)

Together with the result for ¢, this determines that the temperatures Tpr and Tr—o, which define regimes (i), (ii)
and (iii) along the line of first-order wetting for ¢ < 0, satisfy

T. —Tpr
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