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Here we present a detailed account of the theoretical calculations that lead to the paper’s results.

Our study is based on a simple square-gradient density functional model of fluid adsorption in systems with short-
ranged forces near a wall situated in the z = 0 plane. We adopt a magnetic notation with local order-parameter m(r),
for which the free-energy functional is written

F [m] =

∫
dr

{
1

2
(∇m)2 + φ(m)

}
+

∫
dx φ1(m1) (1)

where φ(m) is a double-well bulk potential and φ1(m) = cm2/2 − h1m is the surface interaction, which couples to
the magnetisation at the wall m1 via a surface enhancement c and a surface field h1 . For simplicity, we assume an
Ising symmetry denoting the bulk spontaneous magnetization m0 and κ = 1/ξb the inverse of the bulk correlation
length. We begin by supposing that the bulk magnetic field is h = 0− so that the bulk magnetization at subcritical
temperatures takes the value −m0. Minimizing F [m], assuming translational invariance along the wall, yields the
Euler-Lagrange equation

m′′(z) = φ′(m) (2)

which has a first integral that determines the equilibrium magnetization profile m(z) :

m′(z) = ±
√

2
(
φ(m)− φ(m0)

)
(3)

together with the boundary condition m′(0) = cm1−h1 . The ± signs apply for the cases m1 < −m0 and m1 > −m0

respectively, to which we shall return shortly. The elegant graphical solution (or Cahn construction [1]) based on the
well-known analogy with the mechanical conservation of energy [2], determines both the equilibrium profiles and the
Nakanishi-Fisher global surface phase diagrams [3].

Here, we focus on the properties of the correlation function G(r, r′) = 〈m(r)m(r′)〉 −m(z)m(z′) which we study via
its transverse Fourier transform G(z, z′; q), where q is a 2D wavevector parallel to the wall with modulus q. This
correlation function satisfies the inhomogeneous Ornstein-Zernike equation [2, 4] which, for our square-gradient model,
reduces to

(L+ q2)G(z, z′; q) = δ(z − z′) (4)

where

L = −∂2
z + φ′′

(
m(z)

)
(5)

together with the boundary condition ∂zG(z, z′; q)|z=0 = cG(0, z′), and we have set kBT = 1. This is similar to the
equation for the propagator in simple quantum mechanics and has an analogous spectral expansion

G(z, z′; q) =
∑
n

ψ∗n(z)ψn(z′)

En + q2
(6)

with normalised wavefunctions satisfying the Shrödinger-like equation

Lψn(z) = En ψn(z) (7)

together with boundary conditions ψ′n(0) = c ψn(0) and ψn(∞) = 0. In general, the sum (6) contains both bound
states, for which En < κ2, and a continuum of scattering states with higher energies En ≥ κ2.
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For the ”m4” potential

φ(m) = − t
2
m2 +

u

4
m4 (8)

where t = Tc−T and u > 0, the profiles following from (3) are given explicitly by the simple hyperbolic functions

m(z) =


m0 tanh

κ(`− z)
2

for m1 > −m0

−m0 coth
κ(z + z0)

2
for m1 < −m0

(9)

where κ =
√

2t and m0 =
√
t/u . Defining the parameter τ = m1/m0, or equivalently τ = tanh κ`

2 for 1> τ > −1
and τ = − coth κz0

2 for τ <−1 allows us to link the familiar Cahn construction with the eigenvalue spectrum over
the whole range of allowed equilibrium, metastable and unstable thin film profiles, and is related to c and h1 via the
simple quadratic relation

τ2 − 2
c

κ
τ + 2

h1

m0 κ
− 1 = 0 (10)

determining the corresponding values of ` and z0.

The bound state eigenfunctions are given explicitly by

ψn(z) ∝ e−
√
k2−En z f

(
m(z)

m0

)
(11)

where f(x) = x2 − 2
√

1− En ξ2
b x+ 1− 4

3En ξ
2
b , with corresponding eigenvalues satisfying√
k2 − En − κ τ√
k2 − En + c

=
f(τ)

1− τ2
(12)

which shows a 2D/3D crossover (a non-thermodynamic singularity) when the ground-state eigenvalue reaches the
value E0 = κ2 , yielding the following equation for the location of the crossover τ∗:

κ τ∗(τ
2
∗ − 1) = c

(
τ2
∗ −

1

3

)
(13)

Note that, for the ”m4” potential (8), the lines of critical and first-order wetting occur along

1

2

(
c̃ 2 + 1 + 2h̃1

)3/2

− 1

2

(
c̃ 2 + 1− 2h̃1

)3/2

− 3 c̃ h̃1 = 1 (14)

where c̃ = c/κ and h̃1 = h1/κm0 . For c > 0 , a special solution of this is cm0 = h1, corresponding to the line of
critical wetting. Therefore, the intersection of the lines of dimensional reduction and first-order wetting occurs when

τw = τ∗ (15)

which determines the value of c†. Using (10), (13) and (14) yields the numerical result

c† ≈ −0.3375κ (16)

Finally, we note that the Cahn construction determines that, for c < 0, the adsorption of the microscopic wetting
layer is zero when h1 = −cm0, which from (14) occurs for the point on the line of first-order wetting transitions at
which

c = (1− 21/3)κ (17)

Together with the result for c†, this determines that the temperatures TDR and TΓ=0 , which define regimes (i), (ii)
and (iii) along the line of first-order wetting for c < 0, satisfy

Tc − TDR

Tc − TΓ=0
≈ 0.5931 (18)
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