

SUPPLEMENTARY MATERIAL

”Abrupt onset of the capillary-wave spectrum at wall-fluid interfaces”

A.O. Parry¹ and C. Rascón²

¹Department of Mathematics, Imperial College London, London SW7 2BZ, UK

²GISC, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain

Here we present a detailed account of the theoretical calculations that lead to the paper’s results.

Our study is based on a simple square-gradient density functional model of fluid adsorption in systems with short-ranged forces near a wall situated in the $z = 0$ plane. We adopt a magnetic notation with local order-parameter $m(\mathbf{r})$, for which the free-energy functional is written

$$F[m] = \int d\mathbf{r} \left\{ \frac{1}{2} (\nabla m)^2 + \phi(m) \right\} + \int d\mathbf{x} \phi_1(m_1) \quad (1)$$

where $\phi(m)$ is a double-well bulk potential and $\phi_1(m) = cm^2/2 - h_1m$ is the surface interaction, which couples to the magnetisation at the wall m_1 via a surface enhancement c and a surface field h_1 . For simplicity, we assume an Ising symmetry denoting the bulk spontaneous magnetization m_0 and $\kappa = 1/\xi_b$ the inverse of the bulk correlation length. We begin by supposing that the bulk magnetic field is $h = 0^-$ so that the bulk magnetization at subcritical temperatures takes the value $-m_0$. Minimizing $F[m]$, assuming translational invariance along the wall, yields the Euler-Lagrange equation

$$m''(z) = \phi'(m) \quad (2)$$

which has a first integral that determines the equilibrium magnetization profile $m(z)$:

$$m'(z) = \pm \sqrt{2(\phi(m) - \phi(m_0))} \quad (3)$$

together with the boundary condition $m'(0) = cm_1 - h_1$. The \pm signs apply for the cases $m_1 < -m_0$ and $m_1 > -m_0$ respectively, to which we shall return shortly. The elegant graphical solution (or Cahn construction [1]) based on the well-known analogy with the mechanical conservation of energy [2], determines both the equilibrium profiles and the Nakanishi-Fisher global surface phase diagrams [3].

Here, we focus on the properties of the correlation function $G(\mathbf{r}, \mathbf{r}') = \langle m(\mathbf{r})m(\mathbf{r}') \rangle - m(z)m(z')$ which we study via its transverse Fourier transform $G(z, z'; q)$, where \mathbf{q} is a 2D wavevector parallel to the wall with modulus q . This correlation function satisfies the inhomogeneous Ornstein-Zernike equation [2, 4] which, for our square-gradient model, reduces to

$$(\mathcal{L} + q^2) G(z, z'; q) = \delta(z - z') \quad (4)$$

where

$$\mathcal{L} = -\partial_z^2 + \phi''(m(z)) \quad (5)$$

together with the boundary condition $\partial_z G(z, z'; q)|_{z=0} = cG(0, z')$, and we have set $k_B T = 1$. This is similar to the equation for the propagator in simple quantum mechanics and has an analogous spectral expansion

$$G(z, z'; q) = \sum_n \frac{\psi_n^*(z) \psi_n(z')}{E_n + q^2} \quad (6)$$

with normalised wavefunctions satisfying the Shrödinger-like equation

$$\mathcal{L} \psi_n(z) = E_n \psi_n(z) \quad (7)$$

together with boundary conditions $\psi_n'(0) = c\psi_n(0)$ and $\psi_n(\infty) = 0$. In general, the sum (6) contains both bound states, for which $E_n < \kappa^2$, and a continuum of scattering states with higher energies $E_n \geq \kappa^2$.

For the "m⁴" potential

$$\phi(m) = -\frac{t}{2} m^2 + \frac{u}{4} m^4 \quad (8)$$

where $t = T_c - T$ and $u > 0$, the profiles following from (3) are given explicitly by the simple hyperbolic functions

$$m(z) = \begin{cases} m_0 \tanh \frac{\kappa(\ell - z)}{2} & \text{for } m_1 > -m_0 \\ -m_0 \coth \frac{\kappa(z + z_0)}{2} & \text{for } m_1 < -m_0 \end{cases} \quad (9)$$

where $\kappa = \sqrt{2t}$ and $m_0 = \sqrt{t/u}$. Defining the parameter $\tau = m_1/m_0$, or equivalently $\tau = \tanh \frac{\kappa \ell}{2}$ for $1 > \tau > -1$ and $\tau = -\coth \frac{\kappa z_0}{2}$ for $\tau < -1$ allows us to link the familiar Cahn construction with the eigenvalue spectrum over the whole range of allowed equilibrium, metastable and unstable thin film profiles, and is related to c and h_1 via the simple quadratic relation

$$\tau^2 - 2 \frac{c}{\kappa} \tau + 2 \frac{h_1}{m_0 \kappa} - 1 = 0 \quad (10)$$

determining the corresponding values of ℓ and z_0 .

The bound state eigenfunctions are given explicitly by

$$\psi_n(z) \propto e^{-\sqrt{k^2 - E_n} z} f\left(\frac{m(z)}{m_0}\right) \quad (11)$$

where $f(x) = x^2 - 2\sqrt{1 - E_n} \xi_b^2 x + 1 - \frac{4}{3} E_n \xi_b^2$, with corresponding eigenvalues satisfying

$$\frac{\sqrt{k^2 - E_n} - \kappa \tau}{\sqrt{k^2 - E_n} + c} = \frac{f(\tau)}{1 - \tau^2} \quad (12)$$

which shows a 2D/3D crossover (a non-thermodynamic singularity) when the ground-state eigenvalue reaches the value $E_0 = \kappa^2$, yielding the following equation for the location of the crossover τ_* :

$$\kappa \tau_*(\tau_*^2 - 1) = c \left(\tau_*^2 - \frac{1}{3} \right) \quad (13)$$

Note that, for the "m⁴" potential (8), the lines of critical and first-order wetting occur along

$$\frac{1}{2} \left(\tilde{c}^2 + 1 + 2\tilde{h}_1 \right)^{3/2} - \frac{1}{2} \left(\tilde{c}^2 + 1 - 2\tilde{h}_1 \right)^{3/2} - 3\tilde{c}\tilde{h}_1 = 1 \quad (14)$$

where $\tilde{c} = c/\kappa$ and $\tilde{h}_1 = h_1/\kappa m_0$. For $c > 0$, a special solution of this is $cm_0 = h_1$, corresponding to the line of critical wetting. Therefore, the intersection of the lines of dimensional reduction and first-order wetting occurs when

$$\tau_w = \tau_* \quad (15)$$

which determines the value of c_\dagger . Using (10), (13) and (14) yields the numerical result

$$c_\dagger \approx -0.3375 \kappa \quad (16)$$

Finally, we note that the Cahn construction determines that, for $c < 0$, the adsorption of the microscopic wetting layer is zero when $h_1 = -cm_0$, which from (14) occurs for the point on the line of first-order wetting transitions at which

$$c = (1 - 2^{1/3}) \kappa \quad (17)$$

Together with the result for c_\dagger , this determines that the temperatures T_{DR} and $T_{\Gamma=0}$, which define regimes (i), (ii) and (iii) along the line of first-order wetting for $c < 0$, satisfy

$$\frac{T_c - T_{\text{DR}}}{T_c - T_{\Gamma=0}} \approx 0.5931 \quad (18)$$

- [1] J. W. Cahn, Critical Point Wetting, *J. Chem. Phys.* **66**, 3667 (1977).
- [2] J. S. Rowlinson and B. Widom, *Molecular Theory of Capillarity* (Clarendon Press, 1982).
- [3] H. Nakanishi and M. E. Fisher, Multicriticality of Wetting, Prewetting, and Surface Transitions, *Phys. Rev. Lett.* **49**, 1565 (1982).
- [4] R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids, *Adv. Phys.* **28**, 143 (1979).