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1. Materials and Experimental procedures

2,4-Dihydroxybenzoic acid, 1-bromobutane, 1-bromooctane, all bromoalkene (Br(CH2)n-2CH=CH2, 

n=3-11), N,N-dimethyl-4-aminopyridine (DMAP) and 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC) were purchased from Tokyo Kasei Kogyo Co., Ltd.. 4-

Hydroxybenzonitrile and 4'-hydroxy-4-biphenylcarbonitrile were purchased from Nacalai tesque Co., 

Ltd.. Octakis(dimethylsilyloxy)silsesquioxane was purchased from Sigma-Aldrich Co., Ltd.. Toluene 

used in this study was dried by sodium wire and then distilled, and other solvents were used without 

further purification. The synthetic route of the side-on mesogens (A-n, B-n, C-n) and the liquid 

crystal (LC) silsesquioxanes prepared in this research are shown in Figures S1 and S2, respectively.
1H, 13C, and 29Si-NMR measurements were performed with a JEOL ALPHA-400 FT NMR 

(400MHz) spectrometer using CDCl3, (CD3)2CO and deuterated DMSO solvents. In the final 

reaction’s step, FT-IR spectrometer (PERKIN ELMER) was used to check the completeness of the 

coupling reaction, by monitoring the disappearance of the Si-H signal at 2160 cm-1. Gel-permeation-

chromatography (GPC) measurements were carried out using Tosoh HLC-8020 instrument with 

tetrahydrofuran as eluent to check the purity of the samples. Standard polystyrenes were used for 

calibration. Thermal properties were measured by differential scanning calorimetry (DSC) using a 

Diamond DSC (PERKIN ELMER) with heating and cooling rates of 5 °C·min-1. The textures of the 

LC phases were observed with a Nikon ECLIPSE E600 polarizing optical microscope (POM) 

equipped with a METTLER TOLEDO FP-82 hot stage and a METTLER TOLEDO FP-90 central 

processor.
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2. Synthesis and Characterization

Figures S1  The synthetic route of the side-on mesogens (A-n, B-n, C-n).
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The side-on mesogens (A-n, B-n, C-n) were synthesized using the reported methods1-3. As a 

representative, the synthetic detail for A-4 is described here. 1-Bromooctane and 4'-hydroxy-4-

biphenylcarbonitrile were used for B-n and C-n instead of 1-bromobutane and 4-hydroxybenzonitrile, 

respectively.

Methyl 2,4-dihydroxybenzoate   1

A solution of 2,4-dihydroxybenzoic acid (25.0 g; 0.16 mol) in 300 mL of methanol containing a few 

drops of concentrated sulfuric acid was refluxed for 24 h, and most of the methanol was removed by 

distillation. The residue was extracted with ethyl acetate. The organic layer was washed with saturated 

NaHCO3 solution and then water. After evaporating the solvent, the residue was purified by means 

of column chromatography on silica gel using ethyl acetate/hexane (1/1 by volume) as eluent. As a 

result, 24.3 g of methyl 2,4-dihydroxybenzoate was obtained as a white solid. Yield 90 %. 
1H-NMR (CDCl3) : δ (ppm) 10.98 (s, 1H), 7.73 (d, J = 8.8 Hz, 1H), 6.34-6.39 (m, 2H), 5.79 (s, 1H), 

3.92 (s, 3H).

Methyl 4-butoxy-2-hydroxybenzoate   2 (m=4)

A solution containing the obtained methyl 2,4-dihydroxybenzoate (15 g; 0.087 mol), 1-bromobutane 

(12 g; 0.087 mol), and potassium carbonate (12 g; 0.087 mol) in 200 mL of 2-butanone was refluxed 

for 24 h. After removing the solid, ethyl acetate was added to the solvent, and washed with water. 

After the evaporation of the organic solvent, the residue was purified by means of column 

chromatography on silica gel using dichloromethane as eluent. As a result, 16.2 g of methyl 4-butoxy-

2-hydroxybenzoate was obtained as a transparent colorless liquid. Yield 83 %. 
1H-NMR (CDCl3) : δ (ppm) 10.96 (s, 1H), 7.72 (dd, J = 7.3, 2.0 Hz, 1H), 6.37-6.43 (m, 2H), 3.98 (t, 

J = 6.6 Hz, 2H), 3.91 (s, 3H), 1.73-1.80 (m, 2H), 1.48 (dt, J = 14.9, 7.5 Hz, 2H), 0.97 (t, J = 7.3 Hz, 

3H).
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Methyl 2-(but-3-enyloxy)-4-(butoxy)benzoate   3 (m=4, n=4)

A solution containing the obtained methyl 4-butoxy-2-hydroxybenzoate (10 g; 0.045 mol), 4-bromo-

1-butene (6.1 g; 0.045 mol), and potassium carbonate (6.2 g; 0.045 mol) in 150 mL of 2-butanone 

was refluxed for 24 h. After removing the solid, ethyl acetate was added to the solvent, and washed 

with water. After the evaporation of the organic solvent, the residue was purified by means of column 

chromatography on silica gel using dichloromethane/hexane (1/1 by volume) as eluent. As a result, 

4.0 g of methyl 2-(but-3-enyloxy)-4-(butoxy)benzoate was obtained as a transparent colorless liquid. 

Yield 32%. 
1H-NMR (CDCl3) : δ (ppm) 7.82 (d, J = 8.6 Hz, 1H), 6.46 (dd, J = 10.1, 3.5 Hz, 2H), 5.90-6.01 (m, 

1H), 5.15 (ddt, J = 18.4, 7.3, 3.4 Hz, 2H), 4.05 (t, J = 6.8 Hz, 2H), 3.98 (t, J = 6.6 Hz, 2H), 3.84 (s, 

3H), 2.60 (dt, J = 7.0, 5.7 Hz, 2H), 1.73-1.80 (m, 2H), 1.49 (dt, J = 14.9, 7.2 Hz, 2H), 0.98 (t, J = 7.5 

Hz, 3H).

2-(But-3-enyloxy)-4-(butoxy)benzoic acid   4 (m=4, n=4)

The obtained methyl 2-(but-3-enyloxy)-4-(butoxy)benzoate (6.5 g; 0.023 mol) was dissolved in 100 

mL of methanol. This solution was poured into a solution containing NaOH (1.4 g; 0.035 mol) in 20 

mL of water, and the mixture was refluxed for 1.5 h. After the solvent was distilled off, the residue 

was dissolved in water. Then, hydrochloric acid was added until the solution became acidic, 

whereupon a white precipitate formed. The resulting white precipitate was filtered and washed with 

water. The residue was then washed with hexane and dried to obtain 5.3 g of 2-(but-3-enyloxy)-4-

(butoxy)benzoic acid as a white solid. Yield 86%. 
1H-NMR (CDCl3) : δ (ppm) 10.61 (s, 1H), 8.11 (d, J = 9.2 Hz, 1H), 6.59-6.65 (m, 1H), 6.50 (d, J = 

2.4 Hz, 1H), 5.86 (ddt, J = 17.4, 10.5, 6.8 Hz, 1H), 5.20-5.30 (m, 2H), 4.26 (t, J = 6.2 Hz, 2H), 4.02 

(t, J = 6.4 Hz, 2H), 2.66 (q, J = 6.5 Hz, 2H), 1.79 (pentet, J = 7.1 Hz, 2H), 1.44-1.56 (m, 2H), 0.99 (t, 

J = 7.6 Hz, 3H).
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4-Cyanophenyl 2-(but-3-enyloxy)-4-(butoxy)benzoate   A-4 (m=4, n=4)

The obtained 2-(but-3-enyloxy)-4-(butoxy)benzoic acid (3.8 g; 14 mmol)), 4-hydroxybenzonitrile 

(1.7 g; 14 mmol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) (5.4 g; 28 

mmol), and N,N-dimethyl-4-aminopyridine (DMAP) (0.34 g; 2.8 mmol)) were dissolved in 150 mL 

of dichloromethane under argon atmosphere, and the mixture was refluxed for 24 h. Then, 

dichloromethane (100 mL) was added, and the organic layer was washed with saturated NH4Cl 

solution. After the solvent was distilled off, the residue was purified by means of column 

chromatography on silica gel using dichloromethane as eluent. As a result, 4.7 g of 4-cyanophenyl 2-

(but-3-enyloxy)-4-(butoxy)benzoate was obtained as a white solid. Yield 92%.
1H-NMR (CDCl3) : δ (ppm) 8.01 (d, J = 8.3 Hz, 1H), 7.68-7.76 (m, 2H), 7.30-7.36 (m, 2H), 6.48-

6.58 (m, 2H), 5.93 (ddt, J = 17.1, 10.3, 6.8 Hz, 1H), 5.11-5.18 (m, 1H), 5.05-5.10 (m, 1H), 4.09 (t, J 

= 6.8 Hz, 2H), 4.04 (t, J = 6.8 Hz, 2H), 2.60 (q, J = 6.7 Hz, 2H), 1.80 (pentet, J = 7.1 Hz, 2H), 1.44-

1.56 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H).

4-Cyanophenyl 4-(butoxy)-2-(hex-5-enyloxy)benzoate   A-6 (m=4, n=6)
1H-NMR (CDCl3) : δ (ppm) 8.02 (d, J = 8.8 Hz, 1H), 7.67-7.75 (m, 2H), 7.28-7.38 (m, 2H), 6.44-

6.62 (m, 2H), 5.77 (ddt, J = 16.9, 10.5, 4.5 Hz, 1H), 4.89-5.03 (m, 2H), 3.98-4.10 (m, 4H), 2.10 (q, J 

= 7.2 Hz, 2H), 1.75-1.92 (m, 4H), 1.62 (pentet, J = 7.5 Hz, 2H), 1.45-1.57 (m, 2H), 1.00 (t, J = 7.2 

Hz, 3H). Yield 88 %.

4-Cyanophenyl 4-butoxy-2-(undec-10-enyloxy)benzoate   A-11 (m=4, n=11)
1H-NMR (CDCl3) : δ (ppm) 8.01 (d, J = 8.8 Hz, 1H), 7.68-7.74 (m, 2H), 7.28-7.38 (m, 2H), 6.44-

6.62 (m, 2H), 5.81 (ddt, J = 17.1, 10.3, 6.8 Hz, 1H), 4.88-5.05 (m, 2H), 4.04 (t, J = 6.6 Hz, 2H), 3.85-

4.20 (t, 4H), 2.02 (pentet, J = 7.0 Hz, 2H), 1.74-1.90 (m, 4H), 1.16-1.62 (m, 14H), 1.00 (t, J = 7.3 Hz, 

3H). Yield 73 %.
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4'-Cyanobiphenylyl 2-(but-3-enyloxy)-4-(butoxy)benzoate   B-4 (m=4, n=4)
1H-NMR (CDCl3) : δ (ppm) 8.05 (d, J = 8.7 Hz, 1H), 7.56-7.76 (m, 6H), 7.31 (d, J = 8.2 Hz, 2H), 

6.45-6.59 (m, 2H), 5.96 (ddt, J = 17.4, 10.6, 6.8 Hz, 1H), 5.00-5.20 (m, 2H), 4.10 (t, J = 6.9 Hz, 2H), 

4.04 (t, J = 6.4 Hz, 2H), 2.62 (q, J=6.5 Hz, 2H), 1.80 (pentet, J = 7.0 Hz, 2H), 1.44-1.56 (m, 2H), 

1.00 (t, J = 7.2 Hz, 3H). Yield 91 %.

4'-Cyanobiphenylyl 4-butoxy-2-(hex-5-enyloxy)benzoate   B-6 (m=4, n=6)
1H-NMR (CDCl3) : δ (ppm) 8.05 (d, J = 9.1 Hz, 1H), 7.65-7.76 (m, 4H), 7.62 (d, J = 8.6 Hz, 2H), 

7.31 (d, J = 8.6 Hz, 2H), 6.49-6.58 (m, 2H), 5.77 (ddt, J = 16.9, 10.5, 4.5 Hz, 1H), 4.89-5.03 (m, 2H), 

3.98-4.10 (m, 4H), 2.10 (q, J = 7.2 Hz,2H), 1.75-1.92 (m, 4H), 1.62 (pentet, J = 7.5 Hz, 2H), 1.44-

1.57 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H). Yield 89 %.

4'-Cyanobiphenylyl 4-butoxy-2-(undec-10-enyloxy)benzoate   B-11 (m=4, n=11)
1H-NMR (CDCl3) : δ (ppm) 8.05 (d, J = 9.2 Hz, 1H), 7.64-7.77 (m, 4H), 7.62 (d, J = 8.5 Hz, 2H), 

7.31 (d, J = 8.7 Hz, 2H), 6.48-6.58 (m, 2H), 5.81 (ddt, J = 17.2, 10.3, 6.7 Hz, 1H), 4.88-5.05 (m, 2H), 

4.04 (t, J = 6.6 Hz, 2H), 3.85-4.20 (t, 4H), 2.02 (pentet, J = 7.0 Hz, 2H), 1.73-1.91 (m, 4H), 1.16-1.62 

(m, 14H), 1.00 (t, J = 7.4 Hz, 3H). Yield 82 %.

4'-Cyanobiphenylyl 4-octyloxy-2-(prop-2-enyloxy)benzoate   C-3 (m=8, n=3)
1H-NMR (DMSO-d6) : δ (ppm) 7.89-7.99 (m, 5H), 7.81-7.87 (m, 2H), 7.33-7.39 (m, 2H), 6.66-6.72 

(m, 2H), 6.04 (ddt, J = 17.4, 11.0, 4.6 Hz, 1H), 5.49-5.58 (m, 1H), 5.21-5.27 (m, 1H), 4.66-4.72 (m, 

2H), 4.08 (t, J = 6.6 Hz, 2H), 1.74 (pentet, J = 7.1 Hz, 2H), 1.21-1.48 (m, 10H), 0.87 (t, J = 6.9 Hz, 

3H). Yield 94 %.

4'-Cyanobiphenylyl 2-(but-3-enyloxy)-4-(octyloxy)benzoate   C-4 (m=8, n=4)
1H-NMR (DMSO-d6) : δ (ppm) 7.87-7.98 (m, 5H), 7.78-7.87 (m, 2H), 7.31-7.37 (m, 2H), 6.63-6.72 

(m, 2H), 5.93 (ddt, J = 17.4, 10.5, 6.8 Hz, 1H), 5.10-5.19 (m, 1H), 5.01-5.07 (m, 1H), 4.04-4.16 (m, 

4H), 2.41-2.48 (m, 2H), 1.74 (pentet, J = 7.1 Hz, 2H), 1.21-1.47 (m, 10H), 0.87 (t, J = 7.1 Hz, 3H). 

Yield 91 %.
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4'-Cyanobiphenylyl 4-octyloxy-2-(pent-4-enyloxy)benzoate   C-5 (m=8, n=5)
1H-NMR (DMSO-d6) : δ (ppm) 7.89-7.98 (m, 5H), 7.81-7.87 (m, 2H), 7.32-7.37 (m, 2H), 6.63-6.70 

(m, 2H), 5.84 (ddt, J = 17.4, 10.4, 6.7 Hz, 1H), 4.91-5.02 (m, 2H), 4.04-4.13 (m, 4H), 2.23 (q, J = 7.2 

Hz, 2H), 1.82 (pentet, J = 6.9 Hz, 2H), 1.74 (pentet, J = 7.1 Hz, 2H), 1.21-1.48 (m, 10H), 0.87 (t, J = 

7.1 Hz, 3H). Yield 88 %.

4'-Cyanobiphenylyl 2-(hex-5-enyloxy)-4-(octyloxy)benzoate   C-6 (m=8, n=6)
1H-NMR (DMSO-d6) : δ (ppm) 7.88-7.99 (m, 5H), 7.80-7.88 (m, 2H), 7.30-7.37 (m, 2H), 6.62-6.71 

(m, 2H), 5.76 (ddt, J = 17.4, 10.4, 6.7 Hz, 1H), 4.94-5.02 (m, 1H), 4.88-4.94 (m, 1H), 4.02-4.15 (m, 

4H), 2.05 (q, J = 7.3 Hz, 2H), 1.67-1.80 (m, 4H), 1.54 (pentet, J = 7.5 Hz, 2H), 1.20-1.49 (m, 10H), 

0.87 (t, J = 6.9 Hz, 3H). Yield 85 %.

4'-Cyanobiphenylyl 2-(hept-6-enyloxy)-4-(octyloxy)benzoate   C-7 (m=8, n=7)
1H-NMR (DMSO-d6) : δ (ppm) 7.87-7.98 (m, 5H), 7.81-7.87 (m, 2H), 7.31-7.37 (m, 2H), 6.63-6.70 

(m, 2H), 5.73 (ddt, J = 17.2, 10.4, 6.8 Hz, 1H), 4.91-4.99 (m, 1H), 4.85-4.91 (m, 1H), 4.04-4.12 (m, 

4H), 1.97 (q, J = 7.4 Hz, 2H), 1.67-1.79 (m, 4H), 1.22-1.51 (m, 14H), 0.87 (t, J = 6.9 Hz, 3H). Yield 

82 %.

4'-Cyanobiphenylyl 2-(oct-7-enyloxy)-4-(octyloxy)benzoate   C-8 (m=8, n=8)
1H-NMR (DMSO-d6) : δ (ppm) 7.88-7.98 (m, 5H), 7.79-7.87 (m, 2H), 7.30-7.37 (m, 2H), 6.62-6.71 

(m, 2H), 5.73 (ddt, J = 17.4, 10.4, 6.7 Hz, 1H), 4.84-4.97 (m, 2H), 4.03-4.12 (m, 4H), 1.94 (q, J = 7.4 

Hz, 2H), 1.66-1.79 (m, 4H), 1.21-1.52 (m, 16H), 0.87 (t, J = 6.9 Hz, 3H). Yield 89 %.

4'-Cyanobiphenylyl 2-(non-8-enyloxy)-4-(octyloxy)benzoate   C-9 (m=8, n=9)
1H-NMR (DMSO-d6) : δ (ppm) 7.87-7.98 (m, 5H), 7.80-7.86 (m, 2H), 7.29-7.37 (m, 2H), 6.61-6.71 

(m, 2H), 5.71 (ddt, J = 17.4, 10.4, 6.8 Hz, 1H), 4.83-4.96 (m, 2H), 4.02-4.13 (m, 4H), 1.93 (q, J = 7.0 

Hz, 2H), 1.65-1.79 (m, 4H), 1.14-1.50 (m, 18H), 0.87 (t, J = 6.8 Hz, 3H). Yield 79 %.
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4'-Cyanobiphenylyl 2-(dec-9-enyloxy)-4-(octyloxy)benzoate   C-10 (m=8, n=10)
1H-NMR (DMSO-d6) : δ (ppm) 7.87-7.97 (m, 5H), 7.79-7.86 (m, 2H), 7.30-7.36 (m, 2H), 6.61-6.70 

(m, 2H), 5.71 (ddt, J = 17.2, 10.3, 6.7 Hz, 1H), 4.84-4.96 (m, 2H), 3.99-4.14 (m, 4H), 1.92 (q, J = 7.0 

Hz, 2H), 1.64-1.80 (m, 4H), 1.11-1.51 (m, 20H), 0.87 (t, J = 6.8 Hz, 3H). Yield 75 %.

4'-Cyanobiphenylyl 4-octyloxy-2-(undec-10-enyloxy)benzoate   C-11 (m=8, n=11)
1H-NMR (CDCl3) : δ (ppm) 8.05 (d, J = 8.7 Hz, 1H), 7.57-7.77 (m, 6H), 7.29-7.34 (m, 2H), 6.49-

6.57 (m, 2H), 5.78 (ddt, J = 17.2, 10.4, 6.7 Hz, 1H), 4.93-5.01 (m, 1H), 4.88-4.93 (m, 1H), 3.98-4.08 

(m, 4H), 2.00 (q, J = 7.3 Hz, 2H), 1.76-1.89 (m, 4H), 1.18-1.53 (m, 22H), 0.90 (t, J = 7.0 Hz, 3H). 

Yield 77 %.

Figures S2  The synthetic route of the silsesquoxane derivatives (Type A, B, C).
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Side-on Liquid Crystalline silsesquioxane Type A (n=4)

The side-on liquid crystalline silsesquioxane was prepared by means of a typical hydrosilylation of 

an allyl-bearing substituted compound A-4 [4-cyanophenyl 2-(but-3-enyloxy)-4-(butoxy)benzoate] 

with the silsesquioxane having Si-H groups using a platinum catalyst. Octakis(dimethylsilyloxy)-　

silsesquioxane (0.58 g; 5.7×10-4 mol) and 4-cyanophenyl 2-(but-3-enyloxy)-4-(butoxy)benzoate (2.5 

g; 5.7×10-3 mol) were dissolved in 100 mL of dried toluene. Hydrogen hexachloroplatinate (IV) 

hexahydrate (H2PtCl6·6H2O), dissolved in a few milliliters of 2-propanol, was poured into the 

solution, and the mixture was refluxed for 24 h. The reaction mixture was poured into an excess of 

methanol to precipitate the sample. The sample obtained was reprecipitated twice from its toluene 

solution into an excess of methanol and dried in vacuum. The purity of the compound was identified 

by means of gel permeation chromatography (GPC) by checking the disappearance of the peak due 

to non-reacted mesogens. 1H-NMR analysis revealed a completeness of the reaction between the 

silsesquioxane and the mesogen, indicating the complete absence of the vinyl protons (CH2=CH-) of 

the corresponding mesogen at 5.16 ppm and 5.08 ppm, and the loss of Si-H peak at 4.5 ppm. 29Si-

NMR analysis revealed two different silicon peaks at 13.4 ppm and -108.4 ppm that represent 

OSi(CH3)2 and SiO4, respectively. The IR spectra of the silsesquioxane showed the complete 

disappearance of the Si-H stretching band at 2160 cm-1.
1H-NMR (CDCl3) : δ (ppm) 7.93-8.01 (m, 8H), 7.79-7.87 (m, 16H), 7.38-7.46 (m, 16H), 6.58-6.68 

(m, 16H), 4.01-4.14 (m, 32H), 1.66-1.88 (m, 32H), 1.38-1.53 (m, 32H), 0.90-1.02 (m, 24H), 0.52-

0.68 (m, 16H), 0.02-0.13 (m, 48H). 29Si-NMR (Acetone-d6) : δ (ppm) 13.4 (s, OSi(CH3)2), -108.4 (s, 

SiO4). Yield 66 %.

Type A (n=6)
1H-NMR (Acetone-d6) : δ (ppm) 7.93-7.98 (m, 8H), 7.80-7.86 (m, 16H), 7.39-7.46 (m, 16H), 6.58-

6.66 (m, 16H), 4.01-4.12 (m, 32H), 1.68-1.88 (m, 32H), 1.43-1.57 (m, 32H), 1.29-1.42 (m, 32H), 

0.96 (t, J = 7.6 Hz, 24H), 0.53-0.68 (m, 16H), 0.07-0.19 (m, 48H). 29Si-NMR (Acetone-d6) : δ (ppm) 

13.4 (s, OSi(CH3)2), -108.4 (s, SiO4). Yield 52 %.
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Type A (n=11)
1H-NMR (Acetone-d6) : δ (ppm) 7.96 (d, J = 8.7 Hz, 8H), 7.81-7.89 (m, 16H), 7.40-7.49 (m, 16H), 

6.58-6.68 (m, 16H), 4.01-4.15 (m, 32H), 1.71-1.84 (m, 32H), 1.44-1.57 (m, 32H), 1.18-1.44 (m, 

112H), 0.97 (t, J = 7.3 Hz, 24H), 0.60-0.70 (m, 16H), 0.12-0.22 (m, 48H). 29Si-NMR (Acetone-d6) : 

δ (ppm) 13.4 (s, OSi(CH3)2), -108.4 (s, SiO4). Yield 67 %.

Type B (n=4)
1H-NMR (Acetone-d6) : δ (ppm) 7.95 (d, J = 8.7 Hz, 8H), 7.62-7.84 (m, 48H), 7.21-7.34 (m, 16H), 

6.53-6.66 (m, 16H), 3.94-4.12 (m, 32H), 1.67-1.86 (m, 32H), 1.39-1.62 (m, 32H), 0.88-1.00 (m, 24H), 

0.52-0.69 (m, 16H), 0.01-0.10 (m, 48H). 29Si-NMR (Acetone-d6) : δ (ppm) 13.3 (s, OSi(CH3)2), -

108.4 (s, SiO4). Yield 58 %.

Type B (n=6)
1H-NMR (Acetone-d6) : δ (ppm) 7.96 (d, J = 9.6 Hz, 8H), 7.78-7.84 (m, 32H), 7.69-7.74 (m, 16H), 

7.27-7.34 (m, 16H), 6.59-6.65 (m, 16H), 3.97-4.12 (m, 32H), 1.75 (pentet, J = 7.1 Hz, 32H), 1.41-

1.54 (m, 32H), 1.22-1.38 (m, 32H), 0.95 (t, J = 7.6 Hz, 24H), 0.48-0.60 (m, 16H), 0.02-0.10 (m, 48H). 
29Si-NMR (Acetone-d6) : δ (ppm) 13.3 (s, OSi(CH3)2), -108.3 (s, SiO4). Yield 59 %.

Type B (n=11)
1H-NMR (Acetone-d6) : δ (ppm) 7.96 (d, J = 8.2 Hz, 8H), 7.79-7.89 (m, 32H), 7.69-7.79 (m, 16H), 

7.29-7.37 (m, 16H), 6.58-6.67 (m, 16H), 4.01-4.12 (m, 32H), 1.68-1.86 (m, 32H), 1.43-1.57 (m, 32H), 

1.15-1.42 (m, 112H), 0.96 (t, J = 7.6 Hz, 24H), 0.52-0.66 (m, 16H), 0.08-0.18 (m, 48H). 29Si-NMR 

(Acetone-d6) : δ (ppm) 13.1 (s, OSi(CH3)2), -108.3 (s, SiO4). Yield 48 %.
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Type C (n=3)
1H-NMR (CDCl3) : δ (ppm) 7.86-8.05 (m, 8H), 7.35-7.72 (m, 48H), 7.07-7.27 (m, 16H), 6.25-6.58 

(m, 16H), 3.66-4.04 (m, 32H), 1.62-1.90 (m, 32H), 1.07-1.50 (m, 80H), 0.75-0.93 (m, 24H), 0.53-

0.74 (m, 16H), 0.00-0.17 (m, 48H). 13C-NMR (CDCl3) : δ (ppm) 164.6, 161.6, 156.7, 151.6, 145.2, 

134.5, 132.6, 132.5, 131.2, 128.4, 128.1, 127.7, 127.4, 127.0, 122.6, 122.5, 118.8, 116.0, 110.6, 109.9, 

100.1, 68.3, 31.7, 29.3, 29.2, 29.1, 25.9, 22.6, 14.1, 13.5, -0.5. 29Si-NMR (Acetone-d6) : δ (ppm) 13.3 

(s, OSi(CH3)2), -108.4 (s, SiO4). Yield 66 %.

Type C (n=4)
1H-NMR (Acetone-d6) : δ (ppm) 7.95 (d, J = 8.7 Hz, 8H), 7.56-7.84 (m, 48H), 7.19-7.34 (m, 16H), 

6.50-6.66 (m, 16H), 3.90-4.10 (m, 32H), 1.66-1.86 (m, 32H), 1.17-1.64 (m, 96H), 0.87 (t, J = 6.6 Hz, 

24H), 0.50-0.67 (m, 16H), 0.01-0.11 (m, 48H). 13C-NMR (CDCl3) : δ (ppm) 164.5, 163.5, 161.7, 

151.6, 144.7, 136.1, 134.4, 132.5, 128.1, 127.5, 122.6, 118.8, 110.6, 110.6, 105.1, 100.1, 68.7, 68.3, 

31.7, 29.5, 29.3, 29.1, 29.0, 28.8, 25.9, 22.6, 22.6, 17.4, 14.0, -0.5. 29Si-NMR (Acetone-d6) : δ (ppm) 

13.3 (s, OSi(CH3)2), -108.4 (s, SiO4). Yield 56 %.

Type C (n=5)
1H-NMR (Acetone-d6) : δ (ppm) 7.95 (d, J = 8.7 Hz, 8H), 7.62-7.85 (m, 48H), 7.23-7.34 (m, 16H), 

6.52-6.64 (m, 16H), 3.92-4.11 (m, 32H), 1.66-1.84 (m, 32H), 1.19-1.57 (m, 112H), 0.87 (t, J = 6.9 

Hz, 24H), 0.45-0.60 (m, 16H), 0.01-0.11 (m, 48H). 13C-NMR (CDCl3) : δ (ppm) 164.5, 163.5, 161.7, 

151.6, 144.7, 136.1, 134.4, 132.5, 128.1, 127.5, 122.6, 118.8, 110.6, 110.6, 105.1, 100.1, 68.7, 68.3, 

31.7, 29.5, 29.3, 29.1, 29.0, 28.8, 25.9, 22.6, 22.6, 17.4, 14.0, -0.5. 29Si-NMR (Acetone-d6) : δ (ppm) 

13.3 (s, OSi(CH3)2), -108.3 (s, SiO4). Yield 45 %.
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Type C (n=6)
1H-NMR (Acetone-d6) : δ (ppm) 7.96 (d, J = 9.2 Hz, 8H), 7.65-7.86 (m, 48H), 7.25-7.35 (m, 16H), 

6.55-6.65 (m, 16H), 3.95-4.11 (m, 32H), 1.69-1.83 (m, 32H), 1.19-1.58 (m, 128H), 0.87 (t, J = 6.9 

Hz, 24H), 0.47-0.60 (m, 16H), 0.02-0.12 (m, 48H). 13C-NMR (CDCl3) : δ (ppm) 164.5, 163.5, 161.7, 

151.6, 144.7, 136.2, 134.4, 132.5, 128.1, 127.5, 122.6, 118.8, 110.7, 110.6, 105.1, 100.1, 68.8, 68.3, 

33.0, 31.7, 29.3, 29.1, 29.0, 29.0, 25.9, 25.5, 22.7, 22.6, 17.5, 14.0, -0.5. 29Si-NMR (Acetone-d6) : δ 

(ppm) 13.3 (s, OSi(CH3)2), -108.3 (s, SiO4). Yield 60 %.

Type C (n=7)
1H-NMR (Acetone-d6) : δ (ppm) 7.95 (d, J = 9.2 Hz, 8H), 7.68-7.85 (m, 48H), 7.28-7.35 (m, 16H), 

6.58-6.65 (m, 16H), 3.97-4.12 (m, 32H), 1.69-1.84 (m, 32H), 1.20-1.55 (m, 144H), 0.88 (t, J = 6.9 

Hz, 24H), 0.47-0.59 (m, 16H), 0.02-0.12 (m, 48H). 13C-NMR (CDCl3) : δ (ppm) 164.5, 163.6, 161.7, 

151.6, 144.8, 136.2, 134.4, 132.5, 128.1, 127.5, 122.6, 118.8, 110.7, 110.6, 105.2, 100.1, 81.4, 68.8, 

68.3, 33.3, 31.7, 29.3, 29.1, 29.1, 29.1, 25.9, 22.8, 22.6, 17.6, 14.0, -0.4. 29Si-NMR (Acetone-d6) : δ 

(ppm) 13.2 (s, OSi(CH3)2), -108.3 (s, SiO4). Yield 55 %.

Type C (n=8)
1H-NMR (Acetone-d6) : δ (ppm) 7.96 (d, J = 9.2 Hz, 8H), 7.62-7.88 (m, 48H), 7.24-7.37 (m, 16H), 

6.53-6.68 (m, 16H), 3.94-4.12 (m, 32H), 1.68-1.84 (m, 32H), 1.10-1.58 (m, 160H), 0.88 (t, J = 6.3 

Hz, 24H), 0.47-0.63 (m, 16H), 0.03-0.17 (m, 48H). 13C-NMR (CDCl3) : δ (ppm) 164.6, 163.7, 161.7, 

151.6, 144.8, 136.2, 134.4, 132.5, 128.1, 127.5, 122.7, 118.8, 110.7, 110.6, 105.2, 100.1, 68.8, 68.3, 

33.4, 31.7, 29.5, 29.4, 29.4, 29.3, 29.2, 29.1, 25.9, 25.9, 22.9, 22.6, 17.6, 14.1, -0.4. 29Si-NMR 

(Acetone-d6) : δ (ppm) 13.2 (s, OSi(CH3)2), -108.4 (s, SiO4). Yield 69 %.
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Type C (n=9)
1H-NMR (Acetone-d6) : δ (ppm) 7.96 (d, J = 9.6 Hz, 8H), 7.66-7.89 (m, 48H), 7.26-7.37 (m, 16H), 

6.56-6.67 (m, 16H), 3.97-4.13 (m, 32H), 1.69-1.86 (m, 32H), 1.16-1.57 (m, 176H), 0.88 (t, J = 6.6 

Hz, 24H), 0.50-0.62 (m, 16H), 0.06-0.16 (m, 48H). 13C-NMR (CDCl3) : δ (ppm) 164.6, 163.7, 161.7, 

151.6, 144.8, 136.2, 134.4, 132.5, 128.1, 127.5, 122.7, 118.8, 110.7, 110.6, 105.2, 100.1, 68.8, 68.3, 

33.4, 31.7, 29.5, 29.4, 29.4, 29.3, 29.2, 29.1, 25.9, 25.9, 22.9, 22.6, 17.6, 14.1, -0.4. 29Si-NMR 

(Acetone-d6) : δ (ppm) 13.2 (s, OSi(CH3)2), -108.3 (s, SiO4). Yield 52 %.

Type C (n=10)
1H-NMR (Acetone-d6) : δ (ppm) 7.95 (d, J = 8.7 Hz, 8H), 7.69-7.88 (m, 48H), 7.28-7.37 (m, 16H), 

6.58-6.66 (m, 16H), 3.97-4.14 (m, 32H), 1.69-1.85 (m, 32H), 1.14-1.56 (m, 192H), 0.88 (t, J = 6.6 

Hz, 24H), 0.51-0.63 (m, 16H), 0.07-0.17 (m, 48H). 13C-NMR (CDCl3) : δ (ppm) 164.5, 163.7, 161.7, 

151.6, 144.8, 136.2, 134.4, 132.5, 128.1, 127.5, 122.6, 118.8, 110.7, 110.6, 105.2, 100.1, 68.8, 68.3, 

33.4, 31.7, 29.6, 29.6, 29.4, 29.3, 29.1, 29.1, 29.0, 25.9, 25.9, 22.9, 22.6, 17.6, 14.0, -0.4. 29Si-NMR 

(Acetone-d6) : δ (ppm) 13.1 (s, OSi(CH3)2), -108.3 (s, SiO4). Yield 64 %.

Type C (n=11)
1H-NMR (Acetone-d6) : δ (ppm) 8.03 (d, J = 8.7 Hz, 8H), 7.51-7.73 (m, 48H), 7.25-7.32 (m, 16H), 

6.43-6.56 (m, 16H), 3.90-4.08 (m, 32H), 1.71-1.87 (m, 32H), 1.10-1.51 (m, 208H), 0.88 (t, J = 6.9 

Hz, 24H), 0.48-0.60 (m, 16H), 0.03-0.14 (m, 48H). 13C-NMR (CDCl3) : δ (ppm) 164.5, 163.7, 161.7, 

151.6, 144.8, 136.2, 134.4, 132.5, 128.1, 127.5, 122.7, 118.8, 110.7, 110.6, 105.2, 100.1, 68.8, 68.3, 

33.4, 31.7, 29.7, 29.6, 29.4, 29.4, 29.3, 29.1, 29.0, 25.9, 22.9, 22.6, 17.6, 14.0, -0.4. 29Si-NMR 

(Acetone-d6) : δ (ppm) 13.1 (s, OSi(CH3)2), -108.3 (s, SiO4). Yield 58 %.
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Figure S3  1H-NMR spectra of the LC silsesquioxane in Type C (n=4, 11).
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Figure S4  13C-NMR spectra of the LC silsesquioxane in Type C (n=4, 11).
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Figure S5  29Si-NMR spectra of the LC silsesquioxane in Type C (n=4, 11).
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Figure S6  IR spectra of (a) the silsesquioxane core and (b) the LC silsesquioxane (Type A-4).
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3. GPC

Table S1  GPC data of the silsesquioxane derivatives (Type A, B, C).

Mn (×103) Mw (×103) Mw/Mn

4 3.98 4.12 1.04

A 6 3.83 4.15 1.08

11 5.63 6.63 1.18

4 4.34 4.53 1.04

B 6 4.30 4.74 1.10

11 4.96 5.32 1.07

3 3.81 4.04 1.06

4 4.35 4.51 1.03

5 4.35 4.53 1.04

6 4.45 4.75 1.07

C 7 4.65 4.79 1.03

8 4.84 5.00 1.03

9 5.35 5.74 1.07

10 6.02 6.28 1.04

11 7.17 7.43 1.04

Samples (type, n )
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4. DSC and POM

Figure S7  DSC curves of the LC silsesquioxanes in Type A.

Figure S8  DSC curves of the LC silsesquioxanes in Type B.
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Figure S9  DSC curves of the LC silsesquioxanes in Type C.

Figure S10  POM images of the LC silsesquioxanes in Type C; (a, b) n=6 and (c) n=11 on cooling. 
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Table S2  Optical, thermal, and thermodynamic data.

Compound Transitiona Ta (°C) Ha (J/g) Transitionb Tb (°C) Hb (J/g)

Type C (n = 4) G  Colhex

Colhex  N
N  Iso

24
64.3
68.8

0
13.6
8.5

Iso  N
N  Colhex

Colhex  G

68.6
61.5
23

8.4
10.0

0

Type C (n = 6) G  N
N  Iso

18.8
44.7

0
22.6

Iso  N
N  Colhex

Colhex  G

44.8
41.3
17.5

11.0
11.3

Type C (n = 11) G  N
N  Iso

9
35.6

0
3.6

Iso  N
N  G

35.8
7

4.6
0

a Phase transitions, transition temperatures and enthalpy changes collected on second heating DSC run with 
5°C/min scanning rate; b Phase transitions, transition temperature and enthalpy changes collected on cooling 
DSC run with 5°C/min scanning rate. Phase types: G, glassy state; Colhex, hexagonal columnar mesophase; 
Iso, isotropic liquid. First order transition temperatures are given as peak onsets.
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5. SWAXS
Table S3  Table of indexations.

2θexp dexp I[(nm)] hk 2θcal dcal

Phase type
Mesophase 
parameters

Type C (n = 4) (40°C)
4.024
6.99
8.08
10.69
7.6

20.55

21.94
12.63
10.93
8.27
11.6
4.32

VS
S
S
M

M [3]
VS [1.0]

10
11
20
21
hsil

hch+hmes

4.030
6.982
8.064
10.674

21.91
12.65
10.95
8.28

Colhex

a = 25.30 Å
A = 554 Å2

(Z = 1)

Type C (n = 4) (64°C)
3.95
8.09
20.3

22.35
10.9
4.38

S [4]
S [2]

VS [0.8]

Dcol

hsil

hch+hmes

N

Type C (n = 4) (80°C)
3.94
8.01
20.0

22.4
11.0
4.43

S [3]
S [2]

VS [0.7]

Dcol

hsil

hch+hmes

Iso

Type C (n = 11) (23°C)
2.84
6.29
19.7

31.1
14.0
4.51

M [8]
S [3]

VS [0.9]

Dmol

Dsil

hch+hmes

N

Type C (n = 11) (60°C)
6.42
19.2

13.8
4.62

S [3]
VS [0.9]

Dsil

hch+hmes

Iso

2θexp (°), dexp (Å), 2θcal (°), dcal (Å): experimental and calculated angles and d-spacings from peak position of 

maximum; (nm): correlation length from peak width using Scherrer equation with shape factor  = 0.9 (no 
indication: long-range periodicity from sharp reflection); I: intensity of reflection, signal intensity code: VS = 
very strong, S = strong, M = medium, W = weak, VW = very weak; (hk) are the Miller indices of the reflections 
from the columnar lattice; Dcol (Å): average spacing of silsesquioxane columns; hsil (Å): average piling distance 
along silsesquioxane columns; hch (Å), hmes (Å): average lateral distances between molten chains and between 
mesogens; Dmol (Å): molecular layer thickness; Dsil (Å): average lateral spacing of silsesquioxane units; Colhex, 
N, Iso: hexagonal columnar mesophase, nematic mesophase, isotropic liquid phase; a, b, A, Z: columnar lattice 
parameters, lattice area and number of columns per lattice.
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Figure S11  Variation as a function of temperature of the columnar area S in the columnar phase of 
Type C (n = 4) (squares), Type C (n = 6) (discs), and Type B (n = 4) (triangles), deduced from the 
first order reflection of the hexagonal lattice d10 by using S = (2/3)d10

2. Equivalent string areas S for 
Type C (n = 4) in the nematic phase (half solid symbols) and isotropic phase (open symbols) were 
evaluated from the scattering maximum Dsil by using the relation S = (Dsil/0.9763)2 developed in 
reference: M. Marcos, R. Giménez, J. L. Serrano, B. Donnio, B. Heinrich and D. Guillon, Chem. Eur. 
J., 2001, 7, 1006.
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