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1 The model

We calculated the variation of the chemical potential of cholesterol in bilayer membranes, by using a polymeric
self-consistent field theory (SCFT) formulated in the canonical ensemble (Tao et al. (2007); Cai et al. (2017, 2019); Xu et
al. (2019)). The system is composed of three components: 145 AB diblock (a rod-coil) in which A and B copolymers
model a phospholipid (A is the polar headgroup, B is the hydrophobic tail), 7,4 hA-homopolymer (a coil) that mod-
els the external solution (i.e., water), and nc C-homopolymer (a rod) that models cholesterol. The degree of polymer-

ization is N = N4 + Np, Nj4 and N¢ (see Figure 1). We require that the monomer density pg is constant to ensure
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Figure 1: Schematic of the polymers. (a) hA homopolymers with a polymerization degree of Nj, 4. (b) AB di-
block copolymers with a polymerization degree of N = N4 + Np. (c) C homopolymers with a polymerization

degree of Nc. The arrows indicate the directions that we solve the propagators.

that the bilayer is incompressible. The configurations of the hA homopolymer is represented by the continuous curve
R (s)(a" = 0,1,...,1,,), the C homopolymer is represented by R,c(s)(aC = 0,1,...,nc), and the AB diblock
copolymer is represented by Rfm(s) = REAB(S)(DCAB =0,1,...,n45), wheres = 0,1,..., Ny(w = hA, AB,C) is arc
length. Gaussian chains are used to model flexible coil polymers; worm-like chains with a rigid parameter A are used

to model rigid rod polymers. The microparticle density distributions and orientational order parameters at position r is
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Both isotropic and anisotropic interaction are present in the system. The isotropic interaction potential between
polymers is given by (Flory (1953); Ohta and Kawasaki (1986); Holyst and Schick (1992))
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where eij(i, j = {A,B,C}), are the intermolecular interaction forces between i monomers and j monomers, Xij = eij —
(eij +ejj) /2 is the Flory-Huggins parameter which depends on the polymers and is inversely proportional to temperature

(Flory (1953)). The anisotropic potential (Maier-Saupe potential) between molecules reads as (Tao et al. (2007); Maier and
Saupe (1958); Singh ef al. (1994); Li et al. (2014))
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where 7 is the Maier-Saupe parameter that describes the strength of orientation, and $(r) = Sp(r) + S¢(r) is the orien-
tational order parameter. This Maier-Saupe interaction promotes the rod’s parallel arrangement. The stretch energy of
flexible polymers given by
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where a is the statistical segment length of hA and A coils. The rigid rods have bending energy that is given by
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where A (k € {B,C}) is the persistence length parameter of the wormlike chain used to simulate k rods. b and ¢ are the
dR
AB()| and u,c(s) = 1|dRC

tional vectors. In the canonical ensemble, the system consists of a rod-coil diblock copolymer and a blend homopolymer.

statistical segment lengths of B and C rods, respectively. uas(s) = 4 ‘ | are unit orienta-



The number of ny,4, nap and n¢ is fixed, yielding V = (1,4 Nya + nagNap + ncNe)/po. The partition function for the
mixed systems is (Helfand (1975); Edwards (1965))
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where f DR is an integral over all functions R, and ¢ is the Kronecker delta function.
We denote an ensemble average as ¢;(r) =< ¢;(r) > of §;(r)(i = A, B,C), and use the delta function (Fredrickson et
al. (2006))
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Substituting Eq. (1)-(11) and (13)-(16) into Eq. (12), yields
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where H(wj, ¢;,§, M) is the effective Hamiltonian (the Stirling formula n! ~ (£)" (Wu (2016)) is used). This Hamiltonian

is defined as
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QaB, Qna, Qc are single-chain partition functions corresponding to the AB, hA and C polymer in the fields w;, ¢;, ¢, and
M. With this notation
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To calculate the single-chain partition functions, the positive propagator and inverse propagator of the polymer chain
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need to be defined. For instance,
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The single-chain partition functions are obtained from the Feynman-Kac formulas (Freed (1972); Doi et al. (1988)). This

yields the single-chain partition function
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where the integrand function 4(r, s) and 4(r, u, s) are the propagator. Physically g(x, s) is the probability that the s particle
in the polymer chain at the r position; q(r, u,s) represents the probability that the s particle is at the r position in the
u direction. These equations are solved by the modified diffusion equations(MDE) (Helfand (1975); Fredrickson et al.
(2006)) in the presence of the mean fields
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with the initial conditions,
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where [ (1, u) = wy(r) — M(r) : (uu — 3I).



2 Self-consistent field equation

The Hamiltonian H(w;, ¢;, &, M) of the system in equilibrium is needed in order to compute the partition function Z.

We consider the variation of a first order of Hamiltonian with respect to the fields and density distributions. This yields
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The self-consistent field equations are
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When Eq.(36)-(40) satisfy Eq.(41), the effective Hamiltonian H(w;, ¢}, &*, M*) is obtained at the saddle point (w;, ¢}, &*, M*).
The partition function Z given by Eq.(17), can be approximated (Matsen (1995); Hong and Noolandi (1981)) exp(—H (w}, ¢}, &*, M*)).
This yields
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3 Dimensionless model

We use a dimensionless model in order to effectively simulate the bilayer membrane and obtain the key parameters.
We denote the number of molecules as nyp = figgn = 1-n, fipg = ﬁhA/n fic = fic/n, and redefine w/A = wyN,
aJB = wyN, and wc = wyN as wy, wp and wc. We write bN’ and as Ag and Ac respectively. fp = Lp/Rg and
Bc = Lc/Rg are the geometrical asymmetry parameters (Tao et al. (2007), Li et al. (2013)) for the rod length Ly = bN and
Lc = cN. We write f4 = Ny/N, fg =1— fa, fc = Nc/N, and f, = N,/ N; these volume fractions provide normalized
volumes of the polymer. The Flory-Huggins interaction parameters x 4gN, x 4cN and xpc N describe the molecular chain
interactions, and the Maier-Suape interaction parameter 7N controls the orientational strength of rigid molecules. The
free energy per chain of the normalized mixed system of AB diblock copolymers and blend homopolymers with volume
V in the canonical ensemble is
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chain partition can now be written as as
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The self-consistent field equations are
A(r) = xaBN@p(r) + xacNc(r) — (1),
wp(r) = xaBN¢a(r) + xpcNec(r) — &(x),
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4 Numerical method

We now introduce the numerical method to solve the SCF equations. Generally, SCFT models can be solved by
iteration. In solving SCF equations, we first need to solve the MDEs. This is the most time-consuming step. After
solving the SCF equations, the free energy and structure of the bilayers are obtained, allowing the chemical potential of

C polymers to be calculated. A flowchart of the procedure is shown in Figure 2.
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Figure 2: Flowchart for solving the normalized one-dimensional SCF in the canonical ensemb]e.

4.1 Solving the MDEs

We illustrate our procedure for the more complicated Eq. (48); the simpler Eq. (47) is also solved by this approach.

We reformulate Eq. (48) with an initial value q° and a reflection boundary condition:

aa—sq(x, u,s) :aa%q(x, u,s) —I'(x,u)q(x,u,s), (53)

q(x' u, 0) :qo(xl u)/ %Q(xinruxs) = O/ (54)



The computational domain is truncated to the optimal interval [—I*/2,1* /2] with length [*. This minimizes the free
energy and places the boundary condition at x;, = £/[*. (The sign + or — is determined by the sign of the coefficient a).
We employ, the well-known Strang splitting method (Strang (1968)) and obtain the following second-order semi-discrete
scheme for (53) with step size As,

w2 (x,u) =exp(—T(x,u) 42)uk (x, u),
u*(x,u) = exp(d(x)Asax)uH% (x,u),

where 1¥(x,u) is the numerical approximation of u(x,u,s;), and s; = kAs. The solution for u*(x,u) is obtained by the
well-known Crank-Nicolson scheme (Morton and Mayers (2005)).

4.2 Solve the SCF equations

The SCF equations (52) are solved by Picard iteration, where the fields w?(x), M"*?(x) are updated from an old set

i
old

%4 (x), M°(x). In a bit more detail, we first solve the MDEs with these old mean fields to obtain propagators,

of fields, w
T4, qi, qg, q(ij, which are directly used to calculate ¢;(x), and S(x). Next, we assign Lagrange multiplier {(x) according
to Eq. (41). These fields w;, M are updated according to Eq. (55)-(58). These steps are repeated until the errors of SCF
equations are sufficiently small. The free energy is then obtained by Eq. (43).

The old fields wfld(x),MOId(x) (and its corresponding concentrations (,bi“ld(x), S°!(x) ) are updated by using the

iteration,
W (x) =(1 = ) (x) + a1 [xapNGF (x) + xacNg? (x) — £ (x) |, (55)
WH (x) = (1 = a)wf(x) + a1 [xanNGF! (x) + xpc N9 (x) = £(x)], (56)
W (x) =(1 = 1) (x) + a1 [xacN§4 (x) + xmeNgg (x) — (), (57)
M™% (1) =(1 — ap)M* (r) + apyNS°(r). (58)

where «;, i = 1,2, are update ratios which, in our calculations, are chosen as #; = 0.03 and ap = 0.01. This Picard-
type iteration is robust, but converges slowly. Therefore when the fields require an inordinately large number of Picard
iterations in order to reduce the errors of updated fields to less than 0.1, we speed up convergence by applying Anderson
acceleration (Thompson et al. (2004)) to the corresponding fixed point problem given by Eq. (41). In both the Picard and

Anderson iterations, the Lagrange multiplier " (x) is

& (x) =5 (xasN(1 = 929(x)) + xacN (1~ 9§(2) + XN (1~ %)) — () — () — wd(v)).
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