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1 The model

We calculated the variation of the chemical potential of cholesterol in bilayer membranes, by using a polymeric

self-consistent field theory (SCFT) formulated in the canonical ensemble (Tao et al. (2007); Cai et al. (2017, 2019); Xu et

al. (2019)). The system is composed of three components: nAB AB diblock (a rod-coil) in which A and B copolymers

model a phospholipid (A is the polar headgroup, B is the hydrophobic tail), nhA hA-homopolymer (a coil) that mod-

els the external solution (i.e., water), and nC C-homopolymer (a rod) that models cholesterol. The degree of polymer-

ization is N = NA + NB, NhA and NC (see Figure 1). We require that the monomer density ρ0 is constant to ensure

Figure 1: Schematic of the polymers. (a) hA homopolymers with a polymerization degree of NhA. (b) AB di-

block copolymers with a polymerization degree of N = NA + NB. (c) C homopolymers with a polymerization

degree of NC. The arrows indicate the directions that we solve the propagators.

that the bilayer is incompressible. The configurations of the hA homopolymer is represented by the continuous curve

RαhA (s)(αhA = 0, 1, . . . , nhA), the C homopolymer is represented by RαC (s)(αC = 0, 1, . . . , nC), and the AB diblock

copolymer is represented by RA
αAB (s) = RB

αAB (s)(αAB = 0, 1, . . . , nAB), where s = 0, 1, . . . , Nw(w = hA, AB, C) is arc

length. Gaussian chains are used to model flexible coil polymers; worm-like chains with a rigid parameter λ are used

to model rigid rod polymers. The microparticle density distributions and orientational order parameters at position r is
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given

φ̂hA
A (r) =

1
ρ0

nhA

∑
αhA=1

∫ NhA

0
dsδ(r− RαhA (s)), (1)

φ̂AB
A (r) =

1
ρ0

nAB

∑
αAB=1

∫ NA

0
dsδ(r− RA

αAB (s)), (2)

φ̂A(r) = φ̂hA
A (r) + φ̂c

A(r), (3)

φ̂B(r) =
1
ρ0

nAB

∑
αAB=1

∫ NB

0
dsδ(r− RB

αAB (s)), (4)

φ̂C(r) =
1
ρ0

nC

∑
αC=1

∫ NC

0
dsδ(r− RαC (s)), (5)

ŜB(r) =
1
ρ0

nAB

∑
αAB=1

∫ NB

0
dsδ(r− RB

αAB (s))
[

uαAB (s)uαAB (s)−
I
3

]
, (6)

ŜC(r) =
1
ρ0

nC

∑
αC=1

∫ NC

0
dsδ(r− RαC (s))

[
uαC (s)uαC (s)−

I
3

]
. (7)

Both isotropic and anisotropic interaction are present in the system. The isotropic interaction potential between

polymers is given by (Flory (1953); Ohta and Kawasaki (1986); Holyst and Schick (1992))

Hisotropic =ρ0

∫
V

dr[eABφ̂A(r)φ̂B(r) + eACφ̂A(r)φ̂C(r)

+ eBCφ̂B(r)φ̂C(r) + eAAφ̂A(r)φ̂A(r)

+ eBBφ̂B(r)φ̂B(r) + eCCφ̂C(r)φ̂C(r)], (8)

where eij(i, j = {A, B, C}), are the intermolecular interaction forces between i monomers and j monomers, χij = eij −
(eii + ejj)/2 is the Flory-Huggins parameter which depends on the polymers and is inversely proportional to temperature

(Flory (1953)). The anisotropic potential (Maier-Saupe potential) between molecules reads as (Tao et al. (2007); Maier and

Saupe (1958); Singh et al. (1994); Li et al. (2014))

Hanisotropic = −
ηρ0

2

∫
V

dr[Ŝ(r) : Ŝ(r)], (9)

where η is the Maier-Saupe parameter that describes the strength of orientation, and Ŝ(r) = ŜB(r) + ŜC(r) is the orien-

tational order parameter. This Maier-Saupe interaction promotes the rod’s parallel arrangement. The stretch energy of

flexible polymers given by

Hstretch =
3

2a2 (
nhA

∑
αhA=1

∫ NhA

0
ds
∣∣ dRαhA (s)

ds
∣∣2 + nAB

∑
αAB=1

∫ NA

0
ds
∣∣ dRA

αAB (s)
ds

∣∣2), (10)

where a is the statistical segment length of hA and A coils. The rigid rods have bending energy that is given by

Hbend =
λB
2b

nAB

∑
αAB=1

∫ NB

0
ds
∣∣ duαAB (s)

ds
∣∣2 + λC

2c

nC

∑
αC=1

∫ NC

0
ds
∣∣ duαC (s)

ds
∣∣2, (11)

where λk(k ∈ {B, C}) is the persistence length parameter of the wormlike chain used to simulate k rods. b and c are the

statistical segment lengths of B and C rods, respectively. uαAB (s) = 1
b

∣∣ dRB
αAB (s)
ds

∣∣ and uαC (s) = 1
c
∣∣ dR

αC (s)
ds

∣∣ are unit orienta-

tional vectors. In the canonical ensemble, the system consists of a rod-coil diblock copolymer and a blend homopolymer.
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The number of nhA, nAB and nC is fixed, yielding V = (nhA NhA + nAB NAB + nC NC)/ρ0. The partition function for the

mixed systems is (Helfand (1975); Edwards (1965))

Z =
1

nAB!nhA!nC !

∫
DRA

αAB DRB
αAB DRαhA DuαAB DRαC DuαC

× exp
(
− (Hisotropic + Hanisotropic + Hstretch + Hbend)

)
× δ[uαAB(s) −

1
b

dRB
αAB

ds
]δ[|uαAB | − 1]

× δ[uαC −
1
c

dRαC

ds
]δ[|uαC | − 1]

× δ[φ̂A(r) + φ̂B(r) + φ̂C(r)− 1]. (12)

where
∫

DR is an integral over all functions R, and δ is the Kronecker delta function.

We denote an ensemble average as φi(r) =< φ̂i(r) > of φ̂i(r)(i = A, B, C), and use the delta function (Fredrickson et

al. (2006))

G(φ̂i) =
∫

Dφ[δ(φi − φ̂i)G(φi)]. (13)

to carry out a field transformation

δ(φi(r)− φ̂i(r)) =
∫

Dωi exp
(

ρ0

∫
V

drωi(r)[φi(r)− φ̂i(r)]
)

. (14)

We invoke the condition of incompressibility

δ(∑
i

φ̂i(r)− 1) =
∫

Dξ exp
(

ρ0

∫
V

drξ(r)[∑
i

φi(r)− 1]
)

. (15)

and use the Gaussian integral formulas

exp
( ηρ0

2

∫
V

drŜ(r) : Ŝ(r)
)
=

∫
DM exp

(
− 1

2ηρ0

∫
V drM(r) : M(r) +

∫
V drM(r) : Ŝ(r)

)
∫

DM exp
(
− 1

2ηρ0

∫
V drM(r) : M(r)

) . (16)

Substituting Eq. (1)-(11) and (13)-(16) into Eq. (12), yields

Z =
∫

∏
i∈A,B,C

DωiDφiDξDM exp
(
− H(ωi, φi, ξ, M)

)
(17)

where H(ωi, φi, ξ, M) is the effective Hamiltonian (the Stirling formula n! ≈ ( n
e )

n (Wu (2016)) is used). This Hamiltonian

is defined as

H(ωi, φi, ξ, M) =ρ0

∫
V

dr
[
∑
i 6=j

χijφi(r)φj(r)−∑
i

ωiφi(r) +
1

2η
M(r) : M(r)− ξ(r)(∑

i
φi(r)− 1)

]
− nAB log

eVQAB(ωA, ωB, M)

nAB
− nhA log

eVQhA(ωA)

nhA
− nC log

eVQC(ωC, M)

nC

+
1
2

eAAnhA NhA +
1
2

eAAnAB NA +
1
2

eBBnB NB +
1
2

eCCnC NC. (18)

QAB, QhA, QC are single-chain partition functions corresponding to the AB, hA and C polymer in the fields ωi, φi, ξ, and

M. With this notation

QAB(ωA, ωB, M) =
1
V

∫
∏

k̃∈{A,B}
DRk̃DuαAB δ[uαAB −

1
b

dRB
αAB

ds
]δ[|uαAB | − 1]

× exp
(
− 3

2a2

∫ NA

0

∣∣ dRA
αAB

ds
∣∣2ds− λB

2b

∫ NB

0

∣∣ duαAB

ds
∣∣2ds

)
× exp

(
− ∑

k̃∈{A,B}

∫ Nk̃

0
ωk̃ds +

∫ NB

0
M :

[
uαAB uαAB −

I
3

ds
])

,
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QC(ωC, M) =
1
V

∫
DRCDuαC δ[uαC −

1
c

dRC
α

ds
]δ[|uαC | − 1]

× exp
(
− λC

2c

∫ NC

0

∣∣ duαC

ds
∣∣2ds

)
× exp

(
−
∫ NC

0
{ωC −M :

[
uαC uαC −

I
3
]
}ds
)

,

and

QhA(ωA) =
1
V

∫
V

DRhA exp
(
− 3

2a2

∫ NhA

0

∣∣ dRαhA

ds
∣∣2ds−

∫ NhA

0
ωAds

)
.

To calculate the single-chain partition functions, the positive propagator and inverse propagator of the polymer chain

need to be defined. For instance,

q+A(r, s) =
∫

V
DRBDuαAB DRAPAB(RB, uαAB ; [0, NB]); RA; [0, s])

× exp
(
−
∫ NB

0
{ωB −M :

[
uαAB uαAB −

I
3
]
}ds
)

,

× exp
(
−
∫ s

0
ωAds′

)
· δ(r− RA), ∀s ∈ [0, NA], (19)

q−C (r, u, s) =
∫

V
DRCDuαC PC(RC, uαC ; [0, NC])

× exp
(
−
∫ NC

0
{−M :

[
uαC uαC −

I
3
]
}ds
)

× exp
(
−
∫ s

0
ωCds′

)
· δ(r− RC), ∀s ∈ [0, NC]. (20)

The single-chain partition functions are obtained from the Feynman-Kac formulas (Freed (1972); Doi et al. (1988)). This

yields the single-chain partition function

QAB(ωA, ωB, M) =
1
V

∫
V

drq+A(r, NA) s ∈ [0, NA]. (21)

QhA(ωA) =
1
V

∫
V

drqh
A(r, NhA), s ∈ [0, NhA], (22)

QC(ωC, M) =
1
V

∫
V

dr
∫

S2
duqC(r, u, NC), ∀s ∈ [0, NC]. (23)

where the integrand function q(r, s) and q(r, u, s) are the propagator. Physically q(r, s) is the probability that the s particle

in the polymer chain at the r position; q(r, u, s) represents the probability that the s particle is at the r position in the

u direction. These equations are solved by the modified diffusion equations(MDE) (Helfand (1975); Fredrickson et al.

(2006)) in the presence of the mean fields

∂

∂s
qh

A(r, s) =
( a2

6
∇2

r −ωA(r)
)
qh

A(r, s), s ∈ (0, NhA), (24)

∂

∂s
q±A(r, s) =

( a2

6
∇2

r −ωA(r)
)
q±A(r, s), s ∈ (0, NA), (25)

∂

∂s
q±B (r, u, s) =

(
± bu · ∇r|u − ΓB(r, u)

)
q±B (r, u, s), s ∈ (0, NB), (26)

∂

∂s
q±C (r, u, s) =

(
± cu · ∇r|u − ΓC(r, u)

)
q±C (r, u, s), s ∈ (0, NC). (27)

with the initial conditions,

q−A(r, 0) = qh
A(r, 0) = 1, q+A(r, 0) =

∫
S2

duq−B (r, u, NB),

q+B (r, u, 0) =
1

4π
q−A(r, NA), q−B (r, u, 0) = q±C (r, u, 0) =

1
4π

.

where Γk(r, u) = ωk(r)−M(r) : (uu− 1
3 I).
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2 Self-consistent field equation

The Hamiltonian H(ωi, φi, ξ, M) of the system in equilibrium is needed in order to compute the partition function Z.

We consider the variation of a first order of Hamiltonian with respect to the fields and density distributions. This yields

δH
δωA

= ρ0(−φA −
nAB

ρ0QAB

δQAB
δωA

− nhA
ρ0QhA

δQhA
δωA

) = 0, (28)

δH
δωB

= ρ0(−φB −
nAB

ρ0QAB

δQAB
δωB

) = 0, (29)

δH
δωC

= ρ0(−φC −
nC

ρ0QC

δQC
δωC

) = 0, (30)

δH
δξ

= ρ0(φA + φB + φC − 1) = 0, (31)

δH
δφA

= ρ0(χABφB + χACφC − wA − ξ) = 0, (32)

δH
δφB

= ρ0(χABφA + χBCφC − wB − ξ) = 0, (33)

δH
δφC

= ρ0(χACφA + χBCφB − wC − ξ) = 0, (34)

δH
δM

= ρ0(
1
η

M− nAB
ρ0QAB

δQAB
δM

− nC
ρ0QC

δQC
δM

) = 0. (35)

The density distributions and orientational order parameter is defined as

φA(r) =φh
A(r) + φc

A(r) := − nhA
ρ0QhA

δQhA
δωA

− nAB
ρ0QAB

δQAB
δωA

=
nhA

ρ0VQhA

∫ NhA

0
dsqh

A(r, s)qh
A(r, NhA − s) +

nAB
ρ0VQAB

∫ NA

0
dsq−A(r, s)q+A(r, NA − s), (36)

φB(r) :=− 4πnAB
ρ0QAB

δQAB
δωB

=
4πnAB

ρ0VQAB

∫ NB

0
ds
∫

duq−B (r, u, s)q+B (r, u, NB − s), (37)

φC(r) :=− 4πnC
ρ0QC

δQC
δωC

=
4πnC

ρ0VQC

∫ NC

0
ds
∫

duq−C (r, u, s)q+C (r, u, NC − s), (38)

SB(r) :=
4πnAB
ρ0QAB

δQAB
δM

=
4πnAB

ρ0VQAB

∫ NB

0
ds
∫

duq−B (r, u, s)(uu− I
3
)q+B (r, u, NB − s), (39)

SC(r) :=
4πnC
ρ0QC

δQC
δM

=
4πnC

ρ0VQC

∫ NC

0
ds
∫

duq−C (r, u, s)(uu− I
3
)q+C (r, u, NC − s). (40)

The self-consistent field equations are 

wA(r) = χABφB(r) + χACφC(r)− ξ(r),

wB(r) = χABφA(r) + χBCφC(r)− ξ(r),

wC(r) = χACφA(r) + χBCφB(r)− ξ(r),

1 = φA(r) + φB(r) + φC(r),

M(r) = η(SB(r) + SC(r)).

(41)

When Eq.(36)-(40) satisfy Eq.(41), the effective Hamiltonian H(ω∗i , φ∗i , ξ∗, M∗) is obtained at the saddle point (ω∗i , φ∗i , ξ∗, M∗).

The partition function Z given by Eq.(17), can be approximated (Matsen (1995); Hong and Noolandi (1981)) exp(−H(ω∗i , φ∗i , ξ∗, M∗)).

This yields

F = −κBT ln Z ≈ κBTH(ω∗i , φ∗i , ξ∗, M∗). (42)
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3 Dimensionless model

We use a dimensionless model in order to effectively simulate the bilayer membrane and obtain the key parameters.

We denote the number of molecules as nAB = ñABn = 1 · n, ñhA = ñhA/n, ñC = ñC/n, and redefine ω
′

A = ωA N,

ω
′
B = ωA N, and ω

′

C = ωA N as ωA, ωB and ωC. We write λB
bN , and λC

cN as λB and λC respectively. βB = LB/Rg and

βC = LC/Rg are the geometrical asymmetry parameters (Tao et al. (2007); Li et al. (2013)) for the rod length LB = bN and

LC = cN. We write fA = NA/N, fB = 1− fA, fC = NC/N, and fh = Nh/N; these volume fractions provide normalized

volumes of the polymer. The Flory-Huggins interaction parameters χAB N, χAC N and χBC N describe the molecular chain

interactions, and the Maier-Suape interaction parameter ηN controls the orientational strength of rigid molecules. The

free energy per chain of the normalized mixed system of AB diblock copolymers and blend homopolymers with volume

V in the canonical ensemble is

NF
ρ0V

=
1
V

∫
V

dr
{

∑
i 6=j

χij Nφiφj −∑
i

ωiφi +
1

2ηN
M : M− ξ(∑

i
φi − 1)

}
− 1

ρ̃
log(QnAB

AB QnhA
hA QnC

C )

− 1
ρ̃

log((
Ne
ρ0

)ñAB+ñhA+ñC ) +
N
2ρ̃

EfnT . (43)

where ρ̃ = 1 + ñh fh + ñC fC, E = (eAA, eAA, eBB, eCC), f = diag( fhA, fA, fB, fC), and n = (ñhA, ñAB, ñAB, ñC). The single-

chain partition can now be written as as

QAB[ωA(r), ωB(r), M(r)] =
ρ̃

V

∫
V

drq+A(r, fA), (44)

QhA[ωA(r)] =
ρ̃

ñhAV

∫
V

drqh
A(r, fhA), (45)

QC[ωC(r), M(r)] =
ρ̃

ñCV

∫
V

drq+C (r, u, fC), (46)

the MEDs become

∂
∂s qA(r, s) =

(
R2

g∇2
r −ωA(r)

)
qA(r, s), qA ∈ {qh

A, q±A}, (47)
∂
∂s q±k (r, u, s) =

(
± βku · ∇r − Γk(r, u)

)
q±k (r, u, s), k ∈ {B, C}, (48)

with initial conditions,

q−A(r, 0) = qh
A(r, 0) = 1, q+A(r, 0) =

∫
S2

duq−B (r, u, fB),

q+B (r, u, 0) =
1

4π
q−A(r, fA), q−B (r, u, 0) = q±C (r, u, 0) =

1
4π

.

The density distributions and orientational order parameters are

φA(r) = φh
A(r) + φc

A(r) =
1

QhA

∫ fhA

0
dsqh

A(r, s)qh
A(r, fhA − s) +

1
QAB

∫ fA

0
dsq−A(r, s)q+A(r, fA − s), (49)

φk(r) =
4π

Qk

∫ fk

0
ds
∫

duq−k (r, u, s)q+k (r, u, fB − s), k ∈ {B, C}, (50)

S(r) = SB(r) + SC(r) = ∑
k∈{B,C}

4π

Qk

∫
du
∫ fB

0
ds(uu− I

3
)q−B (r, u, s)q+B (r, u, fB − s)ds. (51)

The self-consistent field equations are

ωA(r) = χAB NφB(r) + χAC NφC(r)− ξ(r),

ωB(r) = χAB NφA(r) + χBC NφC(r)− ξ(r),

ωC(r) = χAC NφA(r) + χBC NφB(r)− ξ(r),

1 = φA(r) + φB(r) + φC(r),

M(r) = ηNS(r).

(52)
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4 Numerical method

We now introduce the numerical method to solve the SCF equations. Generally, SCFT models can be solved by

iteration. In solving SCF equations, we first need to solve the MDEs. This is the most time-consuming step. After

solving the SCF equations, the free energy and structure of the bilayers are obtained, allowing the chemical potential of

C polymers to be calculated. A flowchart of the procedure is shown in Figure 2.

Initial guess of computational domain interval [− l
2 , l

2 ]

Initial guess of ωi, M

Solve the MDEs for qh
A, q±A , q±B , q±C

Calculate φi, S

Update ωi, M

Self-consistent?

Output ωi, M, φi, S

Update the computational domain interval [− l
2 , l

2 ]

Minimal free energy?

Output min
l
F̃ (ñC)

NO

YES

NO

YES

Figure 2: Flowchart for solving the normalized one-dimensional SCF in the canonical ensemble.

4.1 Solving the MDEs

We illustrate our procedure for the more complicated Eq. (48); the simpler Eq. (47) is also solved by this approach.

We reformulate Eq. (48) with an initial value q0 and a reflection boundary condition:

∂
∂s q(x, u, s) =a ∂

∂x q(x, u, s)− Γ(x, u)q(x, u, s), (53)

q(x, u, 0) =q0(x, u), ∂
∂x q(xin, u, s) = 0, (54)



The computational domain is truncated to the optimal interval [−l∗/2, l∗/2] with length l∗. This minimizes the free

energy and places the boundary condition at xin = ±l∗. (The sign + or − is determined by the sign of the coefficient a).

We employ, the well-known Strang splitting method (Strang (1968)) and obtain the following second-order semi-discrete

scheme for (53) with step size ∆s,

uk+ 1
2 (x, u) = exp(−Γ̃(x, u)∆s

2 )uk(x, u),

u∗(x, u) = exp(ã(x)∆s∂x)uk+ 1
2 (x, u),

uk+1(x, u) = exp(−Γ̃0(x, u)∆s
2 )u∗(x, u),

where uk(x, u) is the numerical approximation of u(x, u, sk), and sk = k∆s. The solution for u∗(x, u) is obtained by the

well-known Crank-Nicolson scheme (Morton and Mayers (2005)).

4.2 Solve the SCF equations

The SCF equations (52) are solved by Picard iteration, where the fields ωnew
i (x), Mnew(x) are updated from an old set

of fields, ωold
i (x), Mold(x). In a bit more detail, we first solve the MDEs with these old mean fields to obtain propagators,

qh
A, q±A , q±B , q±C , which are directly used to calculate φi(x), and S(x). Next, we assign Lagrange multiplier ξ(x) according

to Eq. (41). These fields ωi, M are updated according to Eq. (55)-(58). These steps are repeated until the errors of SCF

equations are sufficiently small. The free energy is then obtained by Eq. (43).

The old fields ωold
i (x), Mold(x) (and its corresponding concentrations φold

i (x), Sold(x) ) are updated by using the

iteration,

ωnew
A (x) =(1− α1)ω

old
A (x) + α1

[
χAB Nφold

B (x) + χAC Nφold
C (x)− ξold(x)

]
, (55)

ωnew
B (x) =(1− α1)ω

old
B (x) + α1

[
χAB Nφold

A (x) + χBC Nφold
C (x)− ξold(x)

]
, (56)

ωnew
C (x) =(1− α1)ω

old
C (x) + α1

[
χAC Nφold

A (x) + χBC Nφold
B (x)− ξold(x)

]
, (57)

Mnew(r) =(1− α2)Mold(r) + α2ηNSold(r). (58)

where αi, i = 1, 2, are update ratios which, in our calculations, are chosen as α1 = 0.03 and α2 = 0.01. This Picard-

type iteration is robust, but converges slowly. Therefore when the fields require an inordinately large number of Picard

iterations in order to reduce the errors of updated fields to less than 0.1, we speed up convergence by applying Anderson

acceleration (Thompson et al. (2004)) to the corresponding fixed point problem given by Eq. (41). In both the Picard and

Anderson iterations, the Lagrange multiplier ξnew(x) is

ξnew(x) =
1
3

(
χAB N(1− φold

C (x)) + χAC N(1− φold
B (x)) + χBC N(1− φold

A (x))−ωold
A (x)−ωold

B (x)−ωold
C (x)

)
.
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