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Grand Canonical Transition Matrix Monte Carlo Simulations: 

An efficient Transition Matrix Monte Carlo simulation algorithm was given by Fitzgerald et al. to 

study magnetic susceptibility and interfacial tension of 2D-Ising systems.1 Later, it was 

implemented by Errington in isothermal-isobaric and grand canonical simulations.2 We use Grand 

Canonical Transition Matrix Monte Carlo (GC-TMMC) method used by Errington to study our 

dimeric nanoparticles. The transition matrix Monte Carlo (TMMC) is a book-keeping scheme that 

allows biasing the GCMC simulations to adequately sample intermediate densities, meanwhile the 

unbiased probability distributions are also computed.1,2 

In standard Monte Carlo simulations by Metropolis et al.3 a new microstate t is generated from the 

old microstate s with a probability, 𝑝(𝑠 → 𝑡). The attempted new microstate t is accepted with an 

acceptance probability, 𝑎𝑐𝑐(𝑠 → 𝑡) = 𝑚𝑖𝑛 [1,
𝜋(𝑡)

𝜋(𝑠)
]. Here, 𝜋(𝑠) and 𝜋(𝑡) are probability of 

observing in microstate s and t, respectively. If the macrostates corresponding to the microstates 𝑠 

and 𝑡 are denoted by 𝑆 and T, respectively, then 𝛱(𝑇) = ∑ 𝜋(𝑡)𝑛𝜖𝑁  and 𝛱(𝑆) = ∑ 𝜋(𝑠)𝑛𝜖𝑁 . Here, 

𝛱(𝑇) is the probability of observing the system in macrostate T.  At each step, the attempted 

transitions are stored in a collection matrix, 

 𝐶(𝑆 → 𝑇)= 𝐶(𝑆 → 𝑇)+ 𝑎𝑐𝑐(𝑠 → 𝑡) (1) 

 𝐶(𝑆 → 𝑆)= 𝐶(𝑆 → 𝑆)+ 1 − 𝑎𝑐𝑐(𝑠 → 𝑡) (2) 

The transition of system from macrostate S to T is given be macrostate transition probability, 

 
𝑃(𝑆 → 𝑇) =

𝐶(𝑆 → 𝑇)

∑ 𝐶(𝑆 → 𝑆 + ∆𝑆)∆𝑆
 

(3) 
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Using macrostate transition probability, the macrostate probability is obtained using detailed 

balance as follows. 

 𝛱(𝑆)𝑃(𝑆 → 𝑇) = 𝛱(𝑇)𝑃(𝑇 → 𝑆) (4) 

 For a single macrovariable, neighboring macrostates are attempted using the microstate 

transitions. In cases, where required states have relative transition probabilities differing by large 

values, makes it difficult to sample all the states connecting the two required states. Therefore, a 

biasing is applied to pass through all the states within the path of the required states. It is done 

using a weighting function 𝜂(𝑆), which helps in sampling all the states and is given by 

 𝜂(𝑆) = −𝑙𝑛𝛱(𝑆) (5) 

The acceptance criteria is modified as 

 
𝑎𝑐𝑐(𝑠 → 𝑡) = 𝑚𝑖𝑛 [1,

𝜂(𝑡)𝜋(𝑡)

𝜂(𝑠)𝜋(𝑠)
] 

(6) 

However, even after biasing, update of the collection matrix C(S → T) is done using unbiased 

acceptance criterion. For GC-TMMC, S and T denote different number of dimers/molecules in the 

simulation box. Typically, we only allow changes to adjacent states. For example, if 𝑆 ≡ 𝑁 

(number of dimers), then 𝑇 = 𝑁 + 1 or 𝑁 − 1.  

We start the GC-TMMC simulation with an empty cubic box of size 𝑉 = 1000𝐷3. We attempt 

30% particle displacement moves and 70% particle insertion and deletion moves. During insertion, 

the particle is rotated randomly and inserted, taking care of the rotational degree of freedom. A 

histogram of the number of visits to different states are observed. Since, it is a flat histogram 

technique, getting a smooth flat histogram of number of visits confirms a good sampling and 

equilibration. We use four-five independent runs to calculate an average property value. Since, we 

use massively parallel code (MPI), the time and number of cores used depend on the 

supercomputing facility used.  
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Relative chemical potential 

 

Figure S1. Relative chemical potential as a function of density (𝜌) for dimers with 𝑑 =

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 with varying temperatures (T). 
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Simulation snapshots of dense phase for the seven dimers 

 

 
Discussions of simulations snapshots (Figures S2-S4) are presented in the discussions of Figure 7 

of the main manuscript. 

Figure S2. Snapshots from the grand 

canonical Monte Carlo (GCMC) simulations 

for the densities close to the coexisting dense 

phases (𝜌𝑙) of seven dimers at 
𝑇

𝑇𝑐
= 0.725. a) 

Figure showing the creation of slabs from 

the three-dimensional snapshot to view the 

internal structure. The arrow shows the 

viewing direction. We divide the simulation 

cell along x -axis into four slabs of thickness 

2.5. Each slab only shows the particles 

whose centers are within the dimensions of 

the slab. Note that the snapshots are taken 

from the simulations performed with 

periodic boundary conditions along x, y and 

z directions. b) The dense phase 

configurations of seven dimers. Rows from 

top to bottom denote configurations of 

dimers with 𝑑 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

and 0.7, respectively. Columns from left to 

right are slabs whose centers are located at 

different distances from one face of the 

simulation cell. Note that no two slabs 

overlap. 
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Simulation snapshots of dense phase for the seven dimers 

 
Figure S3. Same as the caption of Figure S2. 

 

 



6 
 

Simulation snapshots of dense phase for the seven dimers 

 
Figure S4. Same as the caption of Figure S2. 

Simulation snapshots of Figure S2 to S4 including Figure 7 are obtained using Ovito-an open visualization 

tool.4  
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Radial distribution function of dense phase for the seven dimers 

 

Figure S5. Radial distribution function of the precipitated phase close to the dense phase peak of 

𝑙𝑛Π vs 𝜌 at 𝑇 𝑇𝑐⁄ = 0.725 between (a) attractive sites, 𝑔𝑠𝑠(𝑟), (b) attractive-hard sphere sites, 

𝑔𝑠ℎ(𝑟), and (c) hard sphere sites, 𝑔ℎℎ(𝑟) for hard sphere diameters, d = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

and 0.7. Black, red, green, blue, brown, orange, and magenta curves represent values for d = 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, and 0.7, respectively.  
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