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S1 Dynamical Scaling State

Fig. S1 Experimental system agrees with expected dynamical scaling behavior and polydispersity effects. (a) Droplet size distribution evolution
throughout the dynamical scaling period, normalized by the average droplet size, where t − t0 represents time from the beginning of data collection
and t0 = 7 hrs is the time from emulsification. (b) Time evolution of the squared average droplet radius shows expected linear relationship. (c) Mean
squared displacement of droplet ensembles grouped by radii: [1.60-2.65] µm (blue), (2.65-3.79] µm (orange), (3.79-5.33] µm (purple), (5.33-18.21]
µm (green). Black curves show fits to a power law plus a constant y = axb +c, where c = 2σ2 and σ represents measurement error. The displacements
of smaller droplets contain larger error, as expected, due to image resolution limitations. (d) Mean squared displacement at τ = 10 min as a function
of droplet radius follows the expected a−1 behavior.

Figure S1 confirms that the system has reached a dynamical scaling state, where the squared droplet size increases linearly with time
and the shape of the size distribution does not change significantly (Figs. S1a,b). As expected for droplets in a mechanical continuum,
larger droplets diffuse more slowly (Figs. S1c,d), showing the same scaling as the Stokes-Einstein relation despite being driven by active
stress fluctuations.
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S2 High-Dimensional Measurement Error Correction

Fig. S2 Gaussian noise effects on high-dimensional displacements. (a) Experimental ∆R2 before (grey) and after (green) removing measurement error.
Inset shows the fraction of droplets moving > 4σ for each ∆R2 value. (b) Fraction of droplets moving > 4σ for all τ values. (c) ∆R2 and ∆s between
pairs of simulation configurations (black), simulation after adding Gaussian noise (red), and simulation with Gaussian noise after using the noise
removal method described in the text (green). Experiment results before removing measurement error are shown in grey. (d) Probability distribution
of ∆R2 for τ = 1 simulation time step and τ = 2 min in the experiment. Color scheme is the same as (c).

The experimental measurement error can be quantified by fitting the mean-squared displacement of individual droplets to a power
law plus a constant, MSDxy =AτB+C, where C = 4σ2. The fit is shown in Fig. 2a (main text), where 4σ2 = 0.0036 µm2 and σ = 0.03 µm.
This presumably perturbs high-dimensional displacement calculations, especially for low values of τ. To show how random error affects
our data, we added a Gaussian-distributed noise signal with zero mean and σ = 0.03 µm to the noise-free simulation data (re-scaled for
comparison to the experiment). As shown in Figs. S2c-d (red data), Gaussian error significantly alters the original simulation results by
omitting the smallest displacements.

To reduce the sensitivity of our experimental analysis to measurement error, we modified the calculation of all high-dimensional
Euclidean distances to exclude any contribution from components/dimensions that were below a threshold. We found empirically that
a threshold of 4σ was optimal for the analysis of noisy data to nearly revert to that of the original noiseless data, see Figs. S2c-d (green
data). For the distribution of ∆R2 at τ = 1 simulation time step, noise completely changes the shape and slope of the distribution. This
modified calculation was therefore applied to the experimental ∆R2 and ∆s values throughout our analyses in order to reduce systematic
errors due to noise in the results. Fig. S2a shows the result of this error correction on the experimental ∆R2, bringing the noise floor
closer to zero, while the inset shows that only a very small fraction of droplets moves > 4σ at the smallest ∆R2 values. This confirms
that the smallest ∆R2 values are most affected by noise, compared to larger values which are dominated by large droplet displacements.
Moreover, data at shorter τ values is also more severely affected by noise as shown in Fig. S2b, where the fraction of droplets moving
> 4σ approaches 1 at large τ.
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S3 Emulsion Simulation Displacements

Fig. S3 Van Hove function of simulation droplet displacements for τ = 1, 5, 24, and 140 simulation time units (bottom to top). Solid black curves
represent the best fit ETSD and grey curves show the best fit SD.

Figure S3 shows the distribution of droplet displacements in simulations, for multiple values of τ. These are well fit by an ETSD, and
the α values from the fits follow a time-varying trend similar to the experimental data (see Fig. S4).
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S4 ETSD Shape Parameter

Fig. S4 ETSD stability parameter for the lag-time dependent van Hove displacement distribution, αvH (circles), and for the high-dimensional
displacement vector components distribution, αU (squares), shown for the emulsion experiment (a), and emulsion simulation (b).

We have found that an exponentially truncated stable distribution (ETSD) provides a useful fitting form for the van Hove distribution
in systems with fractal landscape dynamics, as shown in Figs. 3 and S3. The stability parameter α from those fits provides a measure of
how heavy-tailed the distribution is, related to the exponent of the power-law tail in the untruncated SD. These α values, αvH , show a
non-trivial τ dependence shown in Fig. S4, closely resembling that of the high-dimensional displacement vector components, αU . Both
experiment and simulation appear to be trending to a Gaussian value α = 2 at long times, due to regression according to the Central
Limit Theorem. The near constant value of αU in the simulation case for small and intermediate lag times confirms the self-similarity
of the non-random path directions in configuration space.
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S5 Avalanche Clusters

Fig. S5 Cluster analysis for droplets with the largest displacements. (a,b) Simulation data renders of the particles moving in the top 5% of all particles
at 2 different time points, calculated with the same experimental threshold method described in the text. (c) Distribution of the number of droplets, n,
in each cluster shows power law scaling for both experiment and simulation. (d) The volume of individual clusters, V , shows a power law dependence
on their radius of gyration, Rg, confirming their fractal shape and matching the averaged simulation results (line). Green circles are averages of the
grey data points.

The droplets with the largest displacements between consecutive confocal images (τ = 2 min) were determined by using a time-
dependent threshold, constructed so that 5% of droplets were above threshold on a time averaged basis. These particles were formed
into clusters using an adjacency matrix that specifies which droplets are contacting neighbours. Droplets were considered to be in
contact if their center-to-center separation was less than 1.1 times the sum of their radii, to allow for measurement error and droplet
distortion. Our findings were not sensitive to this factor. The resulting clusters from the experiment show fractal scaling (Figs. S5c-d)
and are similar to those observed in the simulations (Figs. S5a-b).
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