Supplementary Information for

Wettability-Tuned Silica Particles for Emulsion-Templated Microcapsules

Nicholas C. Starvaggi,¹ B. Jack Bradford,² Cameron D.L. Taylor,² Emily B. Pentzer*1,²

¹Dept. of Chemistry, Texas A&M University, College Station, TX 77843

²Dept. of Materials Science & Engineering, Texas A&M University, College Station, TX 77843 *Correspondence: <u>emilypentzer@tamu.edu</u>

Table of Contents.

Table S1. Amounts of monomer used for interfacial polymerization in various emulsion systems.**Table S2.** Average diameters of polyurea/silica microcapsules.

Table S3. Average weight percent encapsulated material as determined via mass difference or quantitative ¹H NMR.

Figure S1. Representative ¹H-NMR spectrum of extracted [BMIM][PF₆] in deuterated acetone with mesitylene as an internal standard.

Figure S2. Particle size distribution for modified silica particles.

Figure S3. Contact angle determination for SiO₂-Pristine, SiO₂-NH₂, and SiO₂-C1.

Figure S4. Optical microscopy results of additional emulsion systems.

Figure S5. Optical microscopy results of varied surfactant loading (0.5 wt% - 5 wt%) for

PAO₄₃₂-in-H₂O, [BMIM][PF₆]-in-toluene, and DMF-in-octane emulsion systems.

Figure S6. Optical microscopy results of varied phase volume (1:9 - 9:1) for PAO₄₃₂-in-H₂O emulsion system.

Figure S7. Additional SEM images of prepared microcapsules.

Table S1. Amounts of diamine and diisocyanate used for interfacial polymerization in different emulsion systems.

Microcapsule Type	Continuous Phase	Ethylenediamine Amount (mmol)	1,6-hexanediisocyanate Amount (mmol)
PAO ₄₃₂	Water	1.7	1.3
[BMIM][PF ₆]	Toluene	1.3	1.7
DMF	Octane	1.3	1.7

Table S2. Average diameters of polyurea/silica microcapsules as determined by laser diffraction.

Microcapsule Type	Method	Average Diameter (μm)
PAO ₄₃₂		34.8 ± 25.8
[BMIM][PF ₆]	Laser Diffraction	13.8 ± 6.3
DMF		27.5 ± 17.1

Table S3. Average weight percent encapsulated material as determined via mass difference or quantitative ¹H NMR using mesitylene as an internal standard.

Microcapsule Type	Method	Weight Percent Core
PAO ₄₃₂	Mass Difference	82.5 ± 2.4
[BMIM][PF ₆]	¹ H NMR	68 ± 0.009
DMF	N/A	N/A

Figure S1. Representative ¹H-NMR spectrum of extracted [BMIM][PF₆] in deuterated acetone with mesitylene as an internal standard. The relative integration of peaks shaded in green and blue was used to determine weight% core.

Figure S2. Particle size distributions for modified silica particles.

Figure S3. Contact angle determination for (A) SiO_2 -Pristine, (B) SiO_2 -NH₂, and (C) SiO_2 -C1. Due to high hydrophilicity of all three substrates, no measurement could be recorded.

Figure S4. Optical microscopy of additional emulsion systems. (A) PAO₄₃₂-in-water stabilized by SiO₂-C1; (B) *N*,*N*-dimethylformamide-in-octane stabilized by SiO₂-C8.

Figure S5. Optical microscopy results of varied surfactant loading (0.5 wt% - 5 wt%) for PAO₄₃₂-in-H₂O (A), [BMIM][PF₆]-in-toluene (B), and DMF-in-octane (C) emulsion systems. Total emulsion volume was held at 3 mL.

Figure S6. Optical microscopy results of varied phase volume (1:9 - 9:1) for PAO₄₃₂-in-H₂O emulsion system. SiO₂-NH₂ loading was maintained at 3 wt% across all emulsions; total emulsion volume was held at 3 mL.

Figure S7. Additional SEM images of prepared microcapsules: (A) PAO₄₃₂, (B) [BMIM][PF₆], and (C) DMF.