Supplemental Information for "Does freezing induces self-assembly of polymers? A molecular dynamics study"

Mangesh Bhendale,[†] Aindrila Indra,[†] and Jayant K. Singh^{*,†,‡}

†Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016. India:

‡Prescience Insilico Private Limited, 5th Floor, Novel MSR Building, Marathahalli, Bengaluru, Karnataka 560037, India

> E-mail: jayantks@iitk.ac.in Phone: +91 (0)512 2596141. Fax: +91-512-2590104

Abstract

The supporting information contains the system details and the force field parameters that were used for modeling the polymers. This document also contains the tables and figures that support the explanations and conclusions in the main paper i.e., the snapshots of the simulation box during the FISA as well as in the supercooled solution, the diffusivity of the polymers in the supercooled solution, and the PMF curves for the polymer-water interactions.

Force Field Parameters

The polymers were modeled using the force field parameters developed by Naullage and Molinero.¹ The non-bonded parameters for the Lennard Jones interactions between the polymer

Degree of	Type	Solute concentration	No. of polymer	No. of mW water
polymerization (DP)		$(\mathrm{wt}\%)$	molecules	molecules
		0.5	25	49217
	Hydrophilic	1.0	50	48969
		2.5	125	48227
		5.0	250	46991
		0.5	25	48126
4-mer	Amphiphilic	1.0	50	47884
		2.5	125	47159
		5.0	250	45950
		0.5	25	47037
	Hydrophobic	1.0	50	46800
		2.5	125	46091
		5.0	250	44909
		0.5	25	97880
	Hydrophilic	1.0	50	97388
		2.5	125	95913
		5.0	250	93453
		0.5	25	95699
8-mer	Amphiphilic	1.0	50	95219
		2.5	125	93776
		5.0	250	91371
		0.5	25	93520
	Hydrophobic	1.0	50	93050
		2.5	125	91640
		5.0	250	89291
		0.5	10	97546
	Hydrophilic	1.0	20	97056
		2.5	50	95585
		5.0	100	93135
		0.5	10	95365
20-mer	Amphiphilic	1.0	20	94886
		2.5	50	93449
		5.0	100	91052
		0.5	10	93186
	Hydrophobic	1.0	20	92718
		2.5	50	91313
		5.0	100	88972

Table S1: The system details for the simulations.

chains and water are mentioned in Table S2. The bonded parameters for the bonds, angles, and dihedrals of the polymers are mentioned in Table S3 and Table S4 respectively. The bond lengths and angles were constrained using the harmonic bond and angle potentials; $U = k_r (r - r_0)^2$ and $U = k_{\theta} (\theta - \theta_0)^2$, respectively. The dihedral potentials were the same for all the cases; $U = k_1 [1 + \cos \phi]/2 + k_2 [1 - \cos(2\phi)]/2 + k_3 [1 + \cos(3\phi)]/2 + k_4 [1 - \cos(4\phi)]/2$

Table S2: The non-bonded parameters $\varepsilon(kcal \ mol^{-1})$ and $\sigma(\text{\AA})$ for polymer chains and mW water molecules.

	CH_3	CH_2	CH	OH	H_2O
CH_3	0.175, 3.905				
CH_2	0.118, 3.877	0.118, 3.905			
CH	0.144, 3.905	0.097, 3.877	0.080, 3.850		
OH	0.170, 3.536	0.170, 3.536	0.170, 3.536	mW	
H_2O	0.204, 3.536	0.204, 3.536	0.204, 3.536	mW	mW

Table S3: The bonded parameters for the bonds and angles of the polymeric chains.

	$k_r(kcal \ mol^{-1}\text{\AA}^{-2})$	$r_0(\text{Å})$		$k_{\theta}(kcal \ mol^{-1}radian^{-2})$	$\theta_0(^o)$
C1 - C2	30	1.53	C3 - C1 - C2	30	108
C1 - C3	30	1.53	C3 - C1 - O	30	108
C2 - C2	30	1.53	C2 - C1 - C2	30	108
C2 - C3	30	1.53	C2 - C1 - O	30	112
C1 - O	30	1.43	C1 - C2 - C1	30	112
C2 - O	30	1.43	C2 - C1 - O	30	112

Table S4: The bonded parameters for the dihedrals of the polymeric chains.

$k_1 \ (kcal \ mol^{-1})$	$k_2 \ (kcal \ mol^{-1})$	$k_3 \ (kcal \ mol^{-1})$	$k_4 \ (kcal \ mol^{-1})$	
1.411	-0.271	3.145	0.0	

Asphericity and radius of gyration

The morphology of the self-assembled structures was analyzed by evaluating the ashpericity and radius of gyration of the assembled aggregates. The gyration tensor T of a molecule

Temperature	No. of clusters	Aggregation number		
(K)				
In FISA				
263	39	24(1), 8(1), 6(2), 5(1), 4(2), 3(3), 2(5), 1(24)		
253	53	10(1), 8(1), 6(1), 5(3), 4(2), 3(1), 2(6), 1(38)		
240	66	5(4), 3(4), 2(10), 1(48)		
263	17	53(1), 11(1), 10(1), 4(1), 3(1), 2(2), 1(10)		
253	28	20(1), 11(1), 10(1), 8(1), 6(2), 4(2), 3(3), 2(5), 1(12)		
240	37	16(1), 11(1), 6(1), 5(2), 4(4), 3(2), 2(9), 1(17)		
263	12	63(1), 12(1), 9(1), 3(2), 2(3), 1(4)		
253	22	31(1), 13(1), 10(1), 9(1), 7(1), 6(1), 4(1), 3(1), 2(3), 1(11)		
240	35	11(2), 9(1), 7(2), 6(1), 4(1), 3(5), 2(7), 1(16)		
In supercooled solution				
263	73	5(1), 4(2), 3(3), 2(11), 1(56)		
253	77	3(7), 2(9), 1(61)		
240	81	4(1), 3(2), 2(12), 1(66)		
263	35	8(4), 5(4), 4(3), 3(2), 2(8), 1(14)		
253	44	7(1), 6(2), 5(1), 4(6), 3(5), 2(8), 1(11)		
240	56	7(1), 6(1), 5(2), 4(3), 3(2), 2(12), 1(35)		
263	17	39(1), 13(1), 11(1), 5(4), 3(1), 2(5), 1(4)		
253	22	19(1), 14(1), 12(1), 8(1), 7(1), 5(2), 4(2), 3(3), 2(3), 1(7)		
240	30	13(2), 9(2), 7(1), 5(3), 4(2), 3(1), 2(4), 1(15)		
	(K) 263 253 240 263 253 240 263 253 240 263 253 240 263 253 240 263 253 240 263 253 240 263 253 240 263 253 240 263 253	(K) 263 39 253 53 240 66 263 17 253 28 240 37 263 12 253 22 240 37 263 12 253 22 240 35 In su 263 240 81 263 35 240 81 263 35 253 44 240 56 263 17 253 22		

Table S5: The aggregation distribution of 20-mer polymer chains in a cluster with an initial concentration of 5 wt% after FISA and in supercooled solutions. For aggregation number, the term in the parentheses is the number of aggregates for the respective aggregation number.

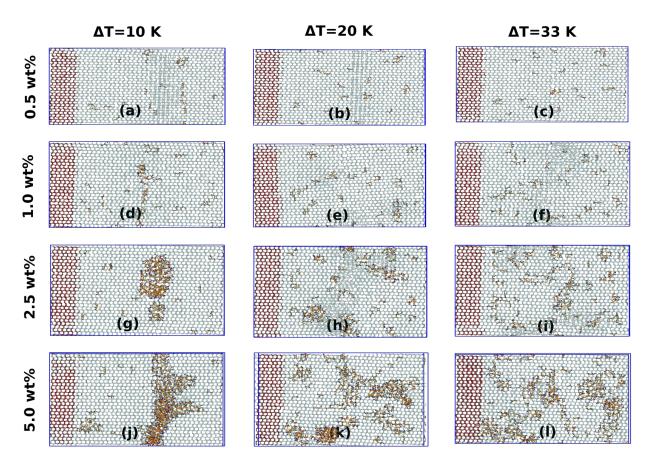


Figure S1: The snapshots of the simulation box after a production run of 100 ns for the amphiphilic 4-mer polymer chains at varying DoS (vertical columns) and different initial concentrations (horizontal rows). The orange, blue, cyan, and red colours represent the polymer backbone, the hydroxyl groups of the polymers, the frozen water molecules, and the ice slab, respectively.

consisting of N (spherical) atoms at cartesian positions $r_i, i = 1, ..., N$, can be represented as,

$$T_{\alpha\beta} = \frac{1}{2N^2} \sum_{i,j=1}^{N} (r_{i,\alpha} - r_{j,\alpha}) (r_{i,\beta} - r_{j,\beta})$$
(S1)

Where, $r_{i,\alpha}$ is the α^{th} component of the r_i and α, β span over 3d components of the cartesian coordinates. Using the gyration tensor T, the asphericity of a aggregate can be calculated as,^{2,3}

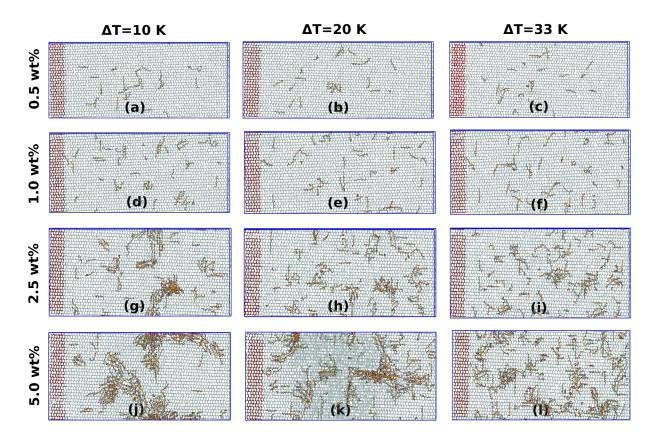


Figure S2: The snapshots of the simulation box after a production run of 100 ns for the amphiphilic 8-mer polymer chains at varying DoS (vertical columns) and different initial concentrations (horizontal rows). The orange, blue, cyan, and red colours represent the polymer backbone, the hydroxyl groups of the polymers, the frozen water molecules, and the ice slab, respectively.

$$\Delta = \frac{3\sum_{i=1}^{3} (\gamma_i - \bar{\gamma})^2}{2(trT)^2}$$
(S2)

Where, γ_i are the eigenvalues of the tensor T and $trT = \sum_{i=1}^{3} \gamma_i = R_g^2$ with $\bar{\gamma} = trT/3$. The components of the gyration tensor were evaluated using *cluster analysis* module in the OVITO⁴ package.

References

(1) Naullage, P. M.; Molinero, V. Slow propagation of ice binding limits the icerecrystallization inhibition efficiency of PVA and other flexible polymers. *Journal of*

Figure S3: The snapshots of the simulation box after a production run of 100 ns for amphiphilic 20-mer polymer chain in the supercooled solution at varying DoS (vertical columns) and different initial concentrations (horizontal rows) in the supercooled solution. The orange, blue, and cyan colours represent the polymer backbone, the hydroxyl groups of the polymers, and the water molecules, respectively.

the American Chemical Society 2020, 142, 4356–4366.

- (2) Homouz, D.; Perham, M.; Samiotakis, A.; Cheung, M. S.; Wittung-Stafshede, P. Crowded, Cell-Like Environment Induces Shape Changes in a Spherical Protein. *Proceedings of the National Academy of Sciences* **2008**, *105*, 11754–11759.
- (3) Maiti, P. K.; Çağın, T.; Wang, G.; Goddard, W. A. Structure of PAMAM Dendrimers: Generations 1 through 11. *Macromolecules* 2004, 37, 6236–6254.
- (4) Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the

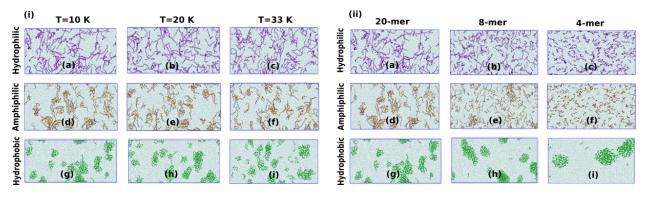


Figure S4: The snapshots of the simulation box after a production run of 100 ns at 5 wt% concentration of the polymer chains in the supercooled solution. (i) The vertical columns and horizontal rows represent the data at a constant DoS and polymer type respectively for 20-mer polymer chains. (ii) The vertical columns and horizontal rows represent the data at a constant DP and polymer type respectively at a DoS of 10 K. The purple, orange, green, blue, and cyan colours represent the hydrophilic polymer backbone, the amphiphilic polymer backbone, the hydrophobic polymer backbone, the hydroxyl groups of the polymers, and the water molecules, respectively.

Open Visualization Tool. Modelling and simulation in materials science and engineering2009, 18, 015012.

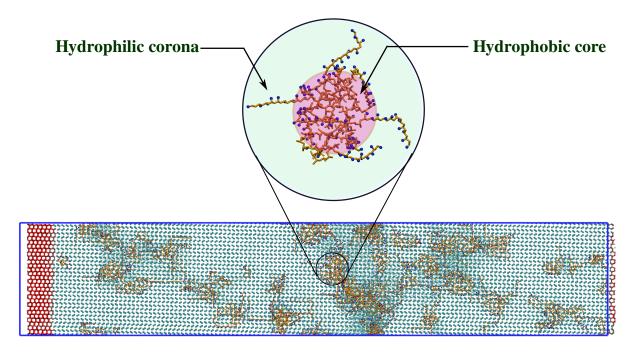


Figure S5: The snapshot of the simulation box after a production run of 100 ns at 5wt% concentration of 20-mer amphiphilic polymer chain with twice the box size in lateral direction (x-axis). The image in the inset shows the structure of the self-assembled aggregate with hydrophobic core and hydrophilic corona.

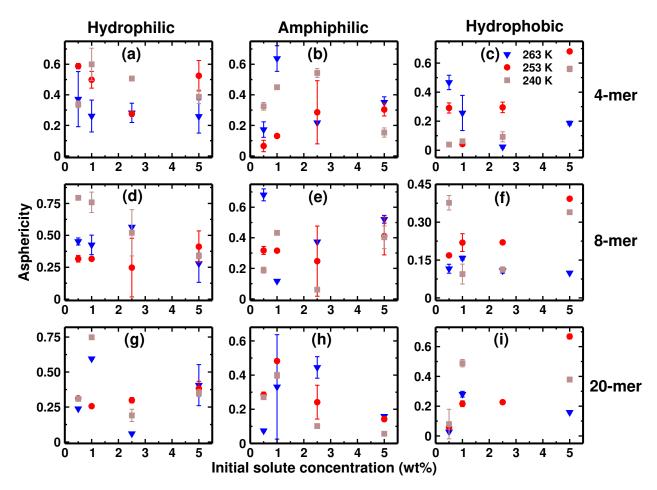


Figure S6: The asphericity of the polymeric aggregates at different DoS, DP, and polymer type.

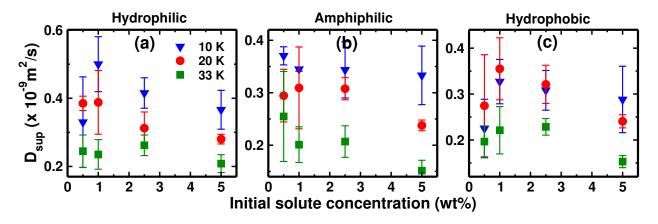


Figure S7: The diffusivity (D_{sup}) of the 20-mer polymers in the supercooled solution as a function of the DoS with different initial concentrations. The diffusivity of (a) hydrophilic, (b) amphiphilic, and (c) hydrophobic 20-mer polymer chains at different DoS. The blue, red, and green colors correspond to the DoS of 10 K, 20 K, and 33 K, respectively.

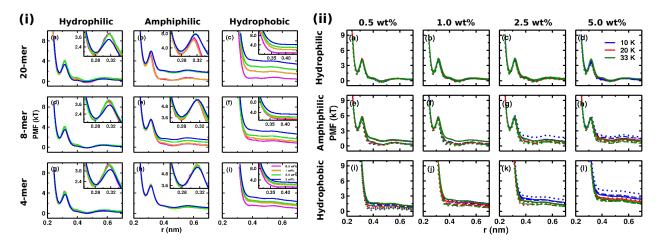


Figure S8: The PMF of the polymer-water interactions at different DoS, DP, and initial polymer concentrations. (i) The PMF of the polymer-water interactions at DoS = 10 K with varying initial concentrations as a function of the DP (horizontal rows) and polymer types (vertical columns), respectively. (ii) The PMF of the polymer-water interactions with varying DoS as a function of the polymer type (horizontal rows) and the initial polymer concentration (vertical columns), respectively. The solid lines, dashed lines, and dotted lines represent the data for polymers with DP 20, 8, and 4 respectively.