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Supplementary Note 1: WASP simulation method
In this section we provide a brief summary of the agent-based simulations. The focus will be on the aspects most relevant
for the current study. For a detailed description of the WASP simulation setup, please refer to the supplemental materials of
Refs. (1, 2).
In the agent-based simulations, we consider M polymers moving on a flat substrate (in two spatial dimensions). Each polymer
n consist of N spherical joints j which are located at a positions r(n)

j (with j∈{0,1, . . . ,N−1}, where the polymer tip is

denoted by j=0). The direction of a polymer’s tip is denoted by u(n)
0 and its motion is described by:

∂tr(n)
0 = v(n) u(n)

0 −Frep = v(n)

(
cosθ(n)

0
sinθ(n)

0

)
−Frep . (1)

Here Frep describes a weak repulsion force (see Eq. (7)) acting on a polymer head while in contact with the contour of another
polymer. θ(n)

0 denotes the orientation of a polymer and v(n) its free speed. For this study, the speed of each polymer was
chosen at random from a continuous uniform distribution in the interval [0.75,1]v0, where v0 denotes the maximal velocity of
a free polymer (see section S5 for further details on this velocity dispersion).
The orientation of a polymer’s head evolves in time according to

∂tθ
(n)
0 =−δH̃

(n)
0

δθ
(n)
0

+

√
2v(n)

Lp
ξ , (2)

where ξ is random white noise with zero mean and unit variance with the magnitude of the noise given by the prefactor. This
implies that individual polymers perform a persistent random walk with a path persistence length of Lp. H̃(n)

0 sets the—in this
study purely nematic—torque caused by interactions with other polymers.
Before we come to a description of H̃(n)

0 , it will proof useful to introduce several other quantities. The first is the distance
vector

∆rnm =
(
r(n)

0 −r(m))
shDist . (3)

This vector connects the tip of a polymer n with the position of an adjacent polymer’s (denoted by m) contour that has the
shortest possible distance. The local orientation of the contour of the adjacent polymer m is given by θ(m)

j , which corresponds
to the orientation of the polymer segment j of polymer n to which ∆rnm connects. Second, if a polymer is interacting with
several polymers at a time, we define a weighted average direction of the connecting vectors:

∆ẽn :=
∑
m

C (|∆rnm|)
∆rnm
|∆rnm|

. (4)

Here C (|∆rnm|) is a weighting factor accounting for the assumption that a more distant polymer contributes less to an inter-
action. It is given by

C (|∆rnm|) =
{

0 if |∆rnm|>d
(d−|∆rnm|)/d else , (5)

where d defines the interaction radius. Using the orientation of the averaged connecting vector θ̃n, we define an averaged
nematic impact angle as ∆θ̃(n)

n =θ
(n)
0 − θ̃n. Equipped with these definitions we are now in a position to write down the

alignment potential as

H̃
(n)
0 := αnv0

d
cos(2∆θ̃(n)

n )|∆ẽn| , (6)
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where the overall amplitude of the alignment is set by the absolute value of the weighted connecting vector, combined with the
nematic alignment strength αn.
The repulsion force Frep in Eq. (1) is given by

Frep =−s
∑
m

C (|∆rnm|)
∆rnm
|∆rnm|

, (7)

which is used to prevent unphysical aggregation of polymers. It is assumed to be weak with s=0.05. Filaments in actomyosin
motility assays are observed to conduct a trailing motion, where the tail of a polymer follows the movement of the tip (1, 3–6).
To emulate this behaviour, tail joints move according to

∂tr(n)
j =Ks

(∣∣∣r(n)
j −r(n)

j−1

∣∣∣− b) 1
2

(
u(n)
j+1 +u(n)

j

)
. (8)

Here, the second part of the equation, 1
2 (u(n)

j+1 +u(n)
j ), ensures the movement to be in the direction of the average of the

segment’s orientations that are adjacent to joint j. The remainder of Eq. (8) corresponds to a linear (Hookian) restoring force
with spring coefficient Ks=200 that ensures an average length b of the cylindrical segments between bonds.

Supplementary Note 2: Onset of nematic patterns
In this section we provide further information on how the phase diagram shown in Fig. 1(c) of the main text was obtained.
To determine the density ρn as a function ofLp above which nematic patterns are formed, we performed exploratory simulations
in the phase space spanned by the (reduced) global polymer density 〈ρ〉L2 and the persistence length Lp. To guarantee that the
dynamics has reached a steady state we ran these simulations for a time 15873 which is much larger than the initial timescale
t0 ≈ 100 it takes for a system to reach the quasi-stationary, disordered state (2). Figure S1 shows the results of the in silico
parameter scans in density at a set of fixed values for Lp: The blue triangles and red squares correspond to steady states where
we visually observed nematic patterns or a disordered state, respectively. To determine the phase boundary ρn(Lp) we fitted a
function fρ(Lp) = a/Lp (with a as free fitting parameter) to the data points with the lowest density that still exhibited nematic
order [solid line in Fig. S1].
The shape of the boundary line is dictated by the interplay between two counteracting effects: density-dependent, interaction-
induced ordering and rotational diffusion. The former increases linearly with density increase, and above the critical value
of density, spontaneous ordering begins to predominate over diffusion. Thus, the critical density is proportional to rotational
diffusion coefficient and therefore ∝ L−1

p in our case. We take fρ(Lp) as an approximation to the density corresponding to the
onset of nematic patterns, ρn(Lp).
To further test whether this is a satisfactory approximation for the phase boundary, we ran ten independent simulations at a
density corresponding to ρn [cf. dots in Fig. 1 (c) of the main text] and further ten at 0.9ρn for several different Lp for a
twice as large simulation time of 31746. All simulations at ρn formed ordered patterns, while none at 0.9ρn did, affirming that
fρ(Lp) adequately approximates the position of the isotropic-nematic transition.

Supplementary Note 3: Defect detection
In this section, we explain the algorithms we used to identify topological defects in simulations of both the hydrodynamic
theory and the agent-based model.
To algorithmically detect−1/2 defects in both approaches, we took advantage of the fact that inside a defect core the topological
charge density q, defined as (7)

q = 1
4π

(
∂xQ̂xa∂yQ̂ya−∂xQ̂ya∂yQ̂xa

)
, (9)

has a very large negative value (with Q̂=Q/ρ andQ defined as in Eq. (11)), whereas in other regions of space its absolute value
is much smaller (cf. lower right pane of Fig. 2(a) and (d) of the main text). We exploit this fact and define any contiguous
region of space in which q falls below a certain threshold value qthrs as one −1/2 defect.
The position of −1/2 defects in the agent-based model is obtained in the following way. Please first note that the main purpose
of the data from the agent-based simulations in Fig. 3(c)-(e) is to qualitatively confirm the trend observed in the hydrodynamic
model. To quantify the data with a high degree of precision would require averaging over large ensembles, which would be
numerically prohibitively demanding given the very long time scales on which the observed phenomena occur.
The total runtime of each simulation was 142857 (which is much longer than the dynamics of undulations; cf. Movie S1 and
S2), from which we cutted an initial transient (cf. section S7) before starting the measurement. For each value of Lp/〈φ〉 we
averaged over ten independent simulations.
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To obtain q in agent-based simulations, we rasterized space into a grid with a grid spacing of ∆x= 0.3, which is small enough
to resolve the structure of a defect (note that the qualitative agreement between the agent-based simulations and hydrodynamic
model, shown in Fig. 3 of the main text, does not depend on the exact choice of this and the following numerical parameters).
We used the orientations θ(n)

0 of polymer tips residing inside each grid point at a given time to calculate a local value of Q̂
using Eq. (11). To suppress noise due to stochastic particle fluctuations, we further averaged over a time span of 15.9, which is
much shorter than density rearrangements due to bending undulations. With this we obtained q(r, t) using Eq. (9). We chose
qthrs =−0.032, which is much lower than typical values of q outside defects. Additionally, to avoid classifying small and
short-lived density peaks that occur sporadically in the simulations as CTDs, we heuristically filtered them out by requiring the
charge density to be below qthrs for a time of at least 159 for a CTD to be detected.
The hydrodynamic model allows by construction a direct access to theQ-tensor, which allows a direct calculation of the function
q, given by Eq. 9. The positions of −1/2 defects are defined as local minima of the function q and, for consistency, the same
value of qthrs is used as for the agent based simulations. For the measurements in the hydrodynamic model, we discarded
the data collected in the first half of the simulation runs in order to avoid any influence of initial transients. To generate the
data shown in Fig. 3 (a), we classified all runs in which CTDs were detected to be CTD-dominated (blue dots in Fig. 3 (a)).
Distinction between FAEs and stable bands was made via visual inspection.

Supplementary Note 4: Flux measurement through defects
In the main text, we studied the mass flow through a defect as well as the speed of particles during a CTD passage; see
Figs. 4(b) and 4(e), respectively. To this end, we needed detailed information about the position and velocity of particles as
they transitioned from one arm of a defect to another. To determine these quantities, we leveraged the possibility offered by the
agent-based simulations to access the position of each individual polymer at any given point in time.
In order to be able to deduce that a given polymer has transitioned from one arm of a defect to another one, several things have
to be known.
First, one has to find a criterion which allows to algorithmically determine if a polymer is pertinent to a given arm at a given
time. For this we used the following heuristics: Over each arm of a defect we placed a round “classification area”, which is large
enough to cover the full width of the nematic lane (blue regions in Fig. S2, diameter 22L). The positions of the classification
areas were chosen such that they roughly coincided with the area where the nematic lanes recovered their full width (midpoint
distance of classification areas to defect: 26L in Fig. S2). Every polymer being inside one of these regions is classified as
pertinent to the given defect arm.
Second, one has to find a criterion that allows to make a determination as to the origin of particles that have been classified
as belonging to a particular arm. For this we introduced an additionally classification area which encompasses all parts of the
simulation box being further away from the defect core than a specific distance, cf. orange region in Fig. S2 (distance to defect:
40L). (Note that the black colored area does not pertain to any classification area.) After this partitioning, we measured the
currents from one region to another with the below described heuristics. We did this for a time span sufficiently long enough
that many particles can travel from one blue region to another blue region (cf. Fig. S2), but short enough such that bending
undulations do not change the position of the individual lanes significantly. Data in Fig. 4(b) averaged over 159, Fig. 4(e)
averaged over 4019 trajectories in a time of 317.
For the flux measurement heuristics, we each assigned a unique identifier id to every classification area. We then checked in
short intervals of 0.16 for every polymer i if its position coincided with one of the classification areas. If this was the case,
polymer i was assigned the identifier of the region and the time of assignment tassign was saved. If polymer i already had a
different identifier id′ assigned (and hence also a different t′assign), this meant that it had traveled from another classification
area into the current region (without crossing a third region in the meantime). In such a case, we stored the pairs of tuples
(id′, t′assign) and (id, tassign), which allow (combined with with the also saved information of the position and speed of every
polymer at every interval) to reconstruct the path polymer i has taken propagating from region id′ to id. Subsequently, we
replaced the assigned identifier and assignment time of polymer i with that of the current region and the current time and
continued the simulation.

Supplementary Note 5: Dispersion in the polymer velocity
Most studies of active matter assume the speed of agents to be constant and uniform (8). Yet, experiments of the actin motility
assay show actin filaments to have a broad distribution of velocities (1). To take into account the effects of such a velocity
dispersion, we drew the assigned speed of polymers from a distribution (cf. Section S1 of this Supplemental Material). We
have found that the introduction of such a velocity dispersion does not hinder the formation of nematic lanes. To additionally
check whether particles that possess different free velocities behave differently on the level of macroscopic structures—for
example by causing an effective sorting of particles into spatially separate populations, where only relatively fast/slow particles
form part of patterns—we subdivided the system into a grid with a grid spacing of ∆x= 0.3 and determined for each grid-cell
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the locally averaged 〈v(n)〉 of particles inside a simulation exhibiting nematic lanes and CTDs. Any local accumulation of
fast/slow particles would lead to a different value of 〈v(n)〉 when compared to the global average 〈v(n)〉glob. As can be inferred
from Fig. S3, the system is well mixed (up to random fluctuations) with respect to polymer velocities. We further found that the
introduction of a velocity dispersion prevented the decay of purely nematic patterns into oppositely propagating polar waves
(cf. Ref (1)), which hence seems to be an artefact of the assumption of equal and uniform velocities.

Supplementary Note 6: Width of nematic lanes
As discussed in the main text, we measured the width of nematic lanes as a function of density 〈φ〉 in both the agent-based
simulations and the hydrodynamic model (at a constant system size). To this end, we performed several simulations at different
polymer densities but at a fixed persistence length (resp. several realizations of the hydrodynamic model at different 〈φ〉 and
fixed λ). After these systems had reached a configuration in which they exhibited a single straight lane, we measured the width
of the band and the average density 〈φ〉bg in the disordered background. (The width is determined by averaging the density of
the system along the axis of the straight lane, which results in a one dimensional density profile. The width of the lanes in the
hydrodynamic model is then defined as the distance between the two points with the maximal gradient of this curve, which can
easily be obtained due to the absence of noise. In the agent based simulations the lane width is heuristically defined as the width
of the region where this profile exceeds the threshold of three times 〈φ〉bg.) As shown in Fig. S4, the thickness of the lanes
grows linearly with density in both the agent-based simulations and hydrodynamic model, while the density of the disordered
background remains constant.

Supplementary Note 7: FAE detection
In this section we describe the procedure we used to measure the mean number of FAEs present at different parameter regimes
in the agent-based simulation (Fig. 3(e) of the main text).
For this we logged the formation of every FAE in the investigated systems; the most reliable method for detecting FAEs turned
out to be manual inspection of simulation videos. To obtain the mean number of FAEs present, we divided the total lifetime
of all detected FAEs in the system by the total observation time. For every investigated Lp in the agent-based simulations, we
averaged over ten independent simulations, which each ran for a time of 142857.
It is worth to note that agent-based simulations started in a parameter regime in which systems predominantly exhibit FAEs or
stable lanes (i.e., high Lp; see also section “From CTDs to FAEs and bands” in the main text), do not immediately form straight
lanes at the onset of pattern formation, but frequently at first dwell in a state of high activity (cf. left panel of Fig. 3(b) in the
main text) in which no FAE can develop. We measured the duration of this initial transient (“dwell-time”) and found that it is
shorter than a time of 70000 in more than ninety percent of the cases.
We discarded this initial time span in the measurements of the mean numbers of CTDs (cf. section S3) and FAEs present to
rule out any influence of the initial transient on the results.
Further, we studied the temporal evolution of filamentous arc ejections. The motion of a separating arc in the agent based and
the hydrodynamic model, can be visualized using a kymograph of the density projection shown in Fig. S5. As can be inferred
from the bending of the lateral extrusions, the separation process of the arcs starts slowly and continues to accelerate until
complete ejection and eventual dissolvement of the arc.

Supplementary Note 8: Hydrodynamic model
To provide the motivation of our hydrodynamic model we start form the general form of the evolution equation for the proba-
bility distribution function P (r,θ, t):

∂tP (r,θ, t) =−Lp∂i
[
niP (r,θ, t)

]
+∂2

θP (r,θ, t) + interactions , (10)

where n = (cosθ,sinθ) is director vector, and Lp is the path persistence length of the polymers. Time is measured in units of
the diffusion coefficient. Note that we only consider rotational diffusion and neglect translational diffusion. In the following the
space and time dependencies of the probability density are suppressed for brevity. Contribution from the interaction between
the polymers can be introduced in the form of collision intergrals in the Boltzmann ansatz (9–12), or by using the gradient of
the interaction-induced current in a Smoluchowski approach (13).
We define the particle density ρ, the polarity vector p, and the nematic Q-tensor as the first three moments of the probability
distribution function:

ρ :=
∫ 2π

0
dθP (θ) , pi :=

∫ 2π

0
dθniP (θ) , Qij :=

∫ 2π

0
dθ (2ninj− δij)P (θ) , (11)
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where the subscripts i and j denote the Cartesian components and δij represents the Kronecker delta. It is convenient to
consider Fourier harmonics of the probability distribution function:

P (r,θ) =
∞∑

k=−∞
Pk(r)eikθ. (12)

According to their definitions, ρ , pi, and Qij can be expressed via Fourier harmonics as follows:

ρ= 2πP0 , (13a)
pi = π

(
(P1 +P−1), i(P1−P−1)

)
, (13b)

Qij = π
(
(P2 +P−2), i(P2−P−2)

)
, (13c)

where the symbol i denotes the imaginary unit.
By introducing the projection onto the mth harmonics of P :

(. . .)m := 1
2π

∫ 2π

0
dθe−imθ(. . .) , (14)

one obtains the following contributions from the advective and diffusive parts of Eq. (10) to the evolution equations of the mth
Fourier harmonics (Pm):

∂tPm =−m2Pm−Lp∂i(niP (r,θ))m

=−m2Pm−Lp
1
2

[
∂x
∑
k

Pk(δk,m−1 + δk,m+1) +∂y
∑
k

Pk(δk,m−1− δk,m+1)/i
]
. (15)

In terms of the collective variables this can be rewritten as:

∂tρ=−Lp∂ipi , (16a)

∂tpi =−pi−
Lp
2 ∂iρ+ Lp

2 ∂jQij , (16b)

∂tQij =−4Qij−
Lp
2
[
∂ipj +∂jpi− δij∂kpk

]
. (16c)

Note, that we imply summation for repeating indices following the Einstein convention. Since we consider a system with purely
nematic interactions, the polar order decays on short time scales for all strengths of self-propulsion. Thus, the polarity field p
equilibrates fast and can be eliminated adiabatically to arrive at dynamic equations for the density ρ and Q-tensor alone. We
find after rescaling time by a factor of 4:

∂tρ= λ2∆ρ+λ2∂i∂jQij , (17a)

∂tQij =−Qij + λ2

2 ∆Qij +λ2[∂i∂jρ]st
, (17b)

where we have introduced the parameter λ := Lp/(2
√

2), ∆ = ∂i∂i denotes the Laplace operator, and [...]st indicates the
symmetric and traceless part of the expression.
We now discuss the physical meaning of each term on the RHS of Eqs. (17). The first term in the density equation Eq. (17a)
acts like effective translational diffusion, despite the fact that it is actually coming from the single particle advection (note, that
the real translational diffusion is neglected in our model). The second term in equation Eq. (17a) represents anisotropic flux
of material along the nematic order. This term enhances diffusion along the direction of the eigenvector of Qij corresponding
to its positive eigenvalue, and suppresses it along the perpendicular direction. It also can be treated as curvature-induced flux,
since it disappears in a uniformly ordered state.
The first term in the evolution equation of the nematic tensor Eq. (17b) is due to the thermal rotational diffusion. If there were
no interaction between polymers, the action of this term would lead to disordering. The second term in Eq. (17b) penalizes the
distortion of Qij and represents the elasticity in terms of liquid crystal theory. The last term of Eq. (17b) provides the coupling
between the equations. It can be treated simply as an anisotropic diffusive contribution. But it also introduces “aligning torque”
by changing the orientation of nematic order in the presence of the density gradients.
Finally, besides the diffusion- and advection-related terms we need to add interaction-induced contributions. Inspired by
Refs. (14, 15) we also introduce the following terms to describe the nematic interactions of the polymers:

∂tρ= · · ·+ ν̃ρ∆ρ2 + χ̃ρ∂i∂j(ρQij) , (18a)

∂tQij = · · ·+ α̃ρQij− β̃Q2Qij + κ̃ρ〈ρ〉∆Qij + ω̃a
[
2∂iρ∂jρ

]st
. (18b)
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The ν̃ρ-related term in Eq. (18a) comes from the excluded volume interactions between the polymers (however an analogous
term occurs due to the “collision" of polymers, e.g., see Ref. (14)). The last term in Eq. (18a) is an interaction-induced flux
representing a density-dependant correction (16) to the last term of Eq. (17a).
The first term of Eq. (18b) promotes density dependent ordering, which competes with motility-induced disordering coming
from the fist term of Eq. (17b); β is a non-equilibrium Landau coefficient setting the magnitude of order in the bulk. κ̃ρ〈ρ〉
contributes to the restoring elastic constant. As can be seen, this is the only term in our theory that is linearized around the mean
density value, whereas in the most of hydrodynamic models almost all terms in Eq. (18) are subjected to this procedure. We
linearize this particular term for two reasons. Firstly, for the sake of simplicity: we want this term to represent one particular
effect – elasticity (or “rigidity” in terms of the material). Secondly, with this linearization it’s simpler to interpret the term
κ̃ρ〈ρ〉∆Qij as stemming from a free energy, while the contribution κ̃∆(ρQij) could not be obtained from a free energy.
Finally, the last term of Eq. (18b) describes the non-equilibrium anchoring to the density interface (15).
We emphasize again that we are not linearizing ν̃ρ, χ̃ρ, and ω̃a - related terms around the mean density (the latter of which
would simply disappear completely in that case). Such higher-order terms are typically linearized (or ignored) in well-controlled
closures in the vicinity of the isotropic/nematic transition (e.g., within Boltzmann–Ginzburg–Landau approach (11, 17–19)).
However, our observations hint that this linearization procedure, widely used in the field of active nematics, may result in some
physical processes not being accounted for by the resulting models, which in turn can leads to some phenomena (e.g., such as
CTDs) escaping the researchers’ gaze as well.
To obtain the equations of motion presented in the main text we simply combine Eq. (17) and Eq. (18) and re-normalize density
by the critical one φ= ρ/ρn. The coefficients are also renamed accordingly: κ̃ρ→ κφ, etc.
As discussed in the main text, the hydrodynamic model allows to directly access the direction and magnitude of the anisotropic
active flux−∂j(χQij). To complement the illustration of this flux in Fig. 4(d) of the main text, we show in Fig. S6 a direct plot
of this observable as recorded in the hydrodynamic model.
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2.0

10 15 20

Fig. S1. Phase space of nematic order. Agent-based simulations yielding nematic patterns are marked with blue triangles. Simulations exhibiting no order are shown as
red squares. A fit of the functional form fρ(Lp) = a/Lp, where a is the free fit parameter, to the ordered datapoints with the lowest density is shown in solid blue. (See
Appendix for parameters.)
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Fig. S2. Illustration of classification areas. Representative spatial domain of an agent-based simulation containing 91217 polymers which exhibits two condensed
topological defects (CTDs). A circular classification area (regions where the polymers are colored blue) is placed over each nematic lane that emanates as an arm from one
of the defects. Polymers being further away from the defect than the blue classification areas are pooled into one large classification area (shown in orange). All black colored
polymers do not belong to any classification area. (Parameters: Lp = 11L, simulation box size: 163L; see Appendix for further parameters.)
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1.0

0.8

0.9
v(n) /v0

Fig. S3. Local averaged velocities. Local average of the free velocities v(n) of the agents in a system exhibiting nematic patterns. The values of the local averages, 〈v(n)〉,
do not deviate (up to random fluctuations) of the value obtained when averaging over all polymers inside the simulation (〈v(n)〉glob = 0.875v0, where v0 is the maximal
speed of a free polymer). Same data and parameters as used in Fig. 2(a) [the position of the patterns is still perceivable since fluctuations in the low density disordered
background are less suppressed, due to the lower number of polymers over which is being averaged, compared with the high density nematic lanes.]
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Fig. S4. Width of nematic lanes for agent-based simulations (upper panel) and for the hydrodynamic model (lower panel). The width of stable nematic lanes grows with an
increase of the global density 〈φ〉 while the background density 〈φ〉bg stays constant (inset). Parameters: Lp = 20.6L; see Appendix for further parameters.
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Fig. S5. Temporal evolution of FAEs Illustration of a system exhibiting several filamentous arc ejections in sequence in agent based simulations (upper panel) and
hydrodynamic model (lower panel). The density is projected/averaged along the long axis of the lane. The resulting 1-D slices are stacked into the shown Kymograph. Each
FAE can be recognized by an extrusion from the lane. The slight bending of these extrusions towards a more vertical shape is a signature of the accelerated motion of the
ejection.
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FAE CTD

Fig. S6. Anisotropic active flux. Plot of−∂j(χQij) in the hydrodynamic model. Grey segments represent nematic order and the red arrows corresponds to the magnitude
and direction of the current.
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Fig. S7. Anchoring. Depictions of the nematic fieldlines inside a CTD with strong (large |ωa|) and weak (small |ωa|) bilinear anchoring term, respectively.
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Movie S1
Constantly undulating nematic lanes in an agent-based simulation. (Parameters are: ρL2=3.15, Lp=11.1. Scale-bar: 15L.
Density averaged over a time of 15.9 for better visibility.)

Movie S2
Emergence of a multitude of condensed topological defects in agent-based simulations. Note that the lateral movement of
lanes happens on long timescales. A single frame roughly corresponds to the time of 162 a straight moving particle with a
velocity of v0 needs to cross the whole system. (Parameters are: ρL2=3.2, Lp=11.9. Scale-bar: 15L. Density averaged over a
time of 15.9 for better visibility.)

Movie S3
Two condensed topological defects are formed simultaneously in an agent-based simulation. Due to continued undulation
of the connecting nematic lanes the defects eventually disintegrate. (Parameters are: ρL2=3.47, Lp=11.1. Scale-bar: 15L.
Density averaged over a time of 3 for better visibility.)

Movie S4
Several filamentous arc ejection develop in succession along a nematic lane in an agent-based simulation. (Parameters are:
ρL2=2.7, Lp=14.3. Scale-bar: 15L. Density averaged over a time of 15.9 for better visibility.)

Movie S5
Straight and stable nematic lane in an agent-based simulation. (Parameters are: ρL2=1.9, Lp=20.6. Scale-bar: 15L. Density
averaged over a time of 15.9 for better visibility.)

Movie S6
Details of a flux in an agent-based simulation from one arm of a condensed topological defect to the two others. The path that
is taken by the polymer heads is traced out. Only trajectories that start in the upper left arm and eventually will go to either the
lower or upper right arm are visible. (Parameters are: ρL2=3.5, Lp=11.1.)

Movie S7
Emergence of a multitude of condensed topological defects in a simulation of the hydrodynamic model. (Parameters are:
β = 0.05, κφ = 0.2, ωa =−0.5, χφ = 0.4, νφ = 1, λ= 1,〈φ〉= 1.1 )

Movie S8
Several filamentous arc ejection develop in succession along a nematic lane in a simulation of the hydrodynamic model.
(Parameters are: β = 0.05, κφ = 0.2, ωa =−0.5, χφ = 0.4, νφ = 1, λ= 1.2,〈φ〉= 1.1)

Movie S9
Straight and stable nematic lane in a simulation of the hydrodynamic model. (Parameters are: β = 0.05, κφ = 0.2, ωa =
−0.5, χφ = 0.4, νφ = 1, λ= 1.4,〈φ〉= 1.1)

Movie S10
Three-beam symmetrical arrangement of sources of polar particles. The ensuing nematic currents eventually form a condensed
topological defect. (Parameters are: ρL2=3.6, Lp=14.3. Scale-bar: 15L. Density averaged over a time of 15.9 for better
visibility.)
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