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1 Details of systems examined

1.1 Simulation systems

Table S 1 Simulation System Conditions. Loadings (φNP), NP nominal radius (r), and Polymer-NP interactions (εPN)

System φNP (vol%) r (σ) εPN Tg number of NPs Average Tcrit (τLJ)
1 5 3 2.0 (strong) 0.47 20 39459
2 10 3 0.5 (weak) 0.47 42 43641
3 10 5 0.5 (weak) 0.46 9 32426
4 10 3 1.0 (neutral) 0.47 42 61154
5 10 5 1.0 (neutral) 0.47 9 42884
6 10 3 2.0 (strong) 0.48 42 152011
7 10 5 2.0 (strong) 0.47 9 77355
8 15 3 2.0 (strong) 0.49 68 331159
9 15 5 2.0 (strong) 0.47 14 129521
10 20 3 2.0 (strong) 0.50 96 1260857
11 20 5 2.0 (strong) 0.48 20 398619
12 neat polymer 0.46 0 22594

1.2 Experimental systems

Table S 2 Experimental System Details. Nanoparticle Diameters (dNP), Loadings (φNP), and Tg for Nanocomposites and Neat P2VP.

dNP (nm) φNP (vol%) Tg (◦C)
13.0 5.3 104.2

10.3 104.9
16.2 104.9
21.2 105.1

52.0 4.3 104.2
8.9 103.8

13.6 103.8
18.4 104.0

neat P2VP 104.0
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2 Symbols and parameters used

Table S 3 Symbols and Parameters

Symbols and parameters Definition
S softness

PR(S) particles’ probability of rearrangements at a given S
PR,avg(S) bulk-average PR(S)

Σ entropic barrier
Σ1 slope of Σ-S curve
Σ0 intercept of Σ-S curve
∆E energy barrier
e1 slope of ∆E-S curve
e0 intercept of ∆E-S curve

PD (P∗
D) structure-dependent process

PI (P∗
I ) structure-independent process

FD free energy barrier of the structure-dependent process
FI free energy barrier of the structure-independent process
Pnp ratio of PR(S) over PR,avg(S) at different positions
a1 slope of ln(Pnp)-S curve
a0 intercept of ln(Pnp)-S curve

Racc accumulated rearrangement numbers
ε true strain
k1 slope of ε −Racc (normalized) curve
k0 intercept of ε −Racc (normalized) curve
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3 Nanoparticle dispersion state: large nanoparticles, neutral interaction, and weak interaction
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Fig. S 1 SAXS measurements of (a) NP52 nanoparticle composites showing excellent nanoparticle dispersion. Insets in (a) show the nanoparticle
structure factor. Representative SEM image of the 15 vol% NP52 PNC is shown in (b). Pair distribution functions for nanoparticles in the (c) large
particle composites simulations showing good dispersion. Visualization of the nanoparticle distributions are shown in (d) large strong interaction, (e)
small weak interaction, (f) large weak interaction, (g) small neutral interaction, and (h) large neutral interaction particle composites. These results
suggest that neutral interaction nanoparticles are well dispersed but weak interaction nanoparticles aggregate in the composites.
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4 Dynamical decomposition in different systems and T
In addition to the 10 vol% loading PNCs with small and neutral polymer-NP interaction NPs described in the main text,
we also applied our dynamical decomposition model to two other systems: small NPs with strong polymer-NP interactions
and large NPs with neutral polymer-NP interactions. (see Figure S2a - 2d) We also plot the newly introduced quantity, Pnp

(the ratio of PR(S) over PR,ave(S)), as a function of softness for several temperatures, demonstrating that the exponential
relation between Pnp and softness is invariant to temperature within the range tested. Results are presented in Figure S2e
- 2g.

a) b)

c) d)

e) g)f)

Fig. S 2 PR(S), as a function of 1/T for softness values ranging from S =−2.75 (light blue) to S = 1.25 (dark blue): (a) 10 vol% PNCs with small and
strong interaction NPs; (b) 10 vol% PNCs with large and neutral interaction NPs. (c-g) Pnp as a function of S for five positions and the bulk-average
dynamics in 10 vol% PNCs: (c) r = 3σ , εpn = 2.0, T = 0.40; (d) r = 5σ , εpn = 1.0, T = 0.40; (e) r = 3σ , εpn = 1.0, T = 0.35; (f) r = 3σ , εpn = 1.0,
T = 0.37; (g) r = 3σ , εpn = 1.0, T = 0.42.
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5 Regular dynamical decomposition fails near NPs
When we following the protocol described in the main text and use Equation 1 to describe dynamics near the polymer-NP
interface, we observe a breakdown in the relationship between the PR(S) and S. As shown in Figure S3a and S3b, the
left-extended fitting curves of PR versus 1/T at different softness values do not have a shared intersection. Because of
this, ∆E and Σ do not follow a linear relationship with softness near the polymer-NP interface, unlike the bulk-average
dynamics (Figure 3d in the main text). This can be seen in Figure S3c and S3d.
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Fig. S 3 PR(S), as a function of 1/T for softness values ranging from S = −2.75 (light blue) to S = 1.25 (dark blue) at (a) rpos = 0.25σ and (b)
rpos = 0.75σ . ∆E and Σ as a function of softness near NPs at (c) rpos = 0.25σ and (d) rpos = 0.75σ . Results are obtained through regular dynamical
decomposition (Equation 1 in the main text).
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6 Average softness and softness distributions at different positions
The presence of NPs can alter the nearby polymer packing, thus we expect to see a modified softness distribution near the
NP surface. In Figure S4a, we plot softness as a function of rpos for 10 vol% PNCs, with strong and neutral polymer-NP
interactions at T = 0.40. As expected, softness is reduced near the NP surface, with stronger polymer-NP interactions
causing a greater decrease. The deviation from bulk-average softness for rpos < 1.75σ matches the change in P∗

D observed
in Figure 4a in the main text, because softness is a significant component of the structure dependent process in rearrange-
ments. Previous work has reported that softness follows a normal distribution in bulk systems,1 and here we find that this
behavior holds true in PNCs as well. As shown in Figure S4b, softness at different distances from the polymer-NP interface
follows a normal distribution, with the center of the distribution shifting as the average softness varies.

b)a)

Fig. S 4 (a) Average softness as a function of distance to NP surface in 10 vol% PNCs, for both strong interaction and neutral interaction NPs. (b)
softness distribution at different positions in the neutral interaction PNCs. Color gradient represents different positions: rpos = 0.25 (dark red), 1.25
(light red), 2.75 (light blue), and 3.75 σ (dark blue). Results are measured at T = 0.40.

7 Strain-time curves of neutral interaction and strong interaction PNCs
To further expand our decomposition model from undeformed composites to composites within the constant-strain-rate
creep regime, the limit of linear response (versus time) under different stresses must be determined. Strain-time curves
depicting composite deformation under eight different stresses (σc = 0.3 to 0.9) are presented in Figure S5. For both
strong and neutral polymer-NP interaction systems, stresses at or below 0.6 (all the red curves) exhibit a constant-strain-
rate response.

a) b)

Fig. S 5 Strain-time response curves for 10 vol% PNCs with (a) neutral and (b) strong polymer-NP interactions for 8 different stresses (σc = 0 and
σc = 0.3 to 0.9). Color gradient represents the stress gradient, from undeformed PNCs (dark red) to σc = 0.9 (dark blue).
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8 Softness change during creep
Because the softness values are used to determine the structure-dependent process of rearrangement in our dynamical
decomposition, it is necessary to monitor the change in softness during creep deformation. Figure S6a shows the average
softness of PNCs as a function of deformation time. For applied stresses that result in a constant-strain-rate response
(σc ≤ 0.6, red curves), average softness is almost constant after the initial elastic response. For greater applied stresses,
there are significant changes in average softness as deformation progresses (blue curves). These results are consistent
with previous work in a wide range of amorphous materials, where the shift in average softness before yielding is one
order smaller than the standard deviation of softness distribution.2 Figure S6b and S6c show the softness profiles near
the polymer-NP interface under different applied stresses for the entire deformation process (t ≤ 2000) and the constant-
strain-rate region (linear response versus time) respectively (t ≤ 1000 for σc = 0.7, t ≤ 500 for σc = 0.8, and t ≤ 250 for
σc = 0.9 ). In other words, only the blue curves are different in Figure S6b and S6c. These suggest that change in softness
spatial distribution is small within the constant-strain-rate creep regime, which can also be proven by Figure S6d.

d)c)

b)a)

Fig. S 6 Softness change during creep deformation for neutral interaction PNCs at T = 0.40. (a) Average softness of the system as a function of time.
(b) Softness as a function of rpos for the full deformation regime. (c) Softness as a function of rpos for the constant-strain-rate regime, determined in
5a. (d) Softness distribution in PNCs under different stresses. The color gradient represents the same stress gradient in 5, from σc = 0 (dark red) to
σc = 0.9 (dark blue).
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9 Change in PR(S) during creep
In Figure S7, we plot PR(S) as a function of both stress, σc, and position, rpos, where the color gradient represents the
magnitude of PR(S). Here, for the ease of visualization, we pick S = 0.375, results at other softness values are qualitatively
same.

We observe that the change in PR(S) with σc is much smaller than the change in PR(S) with rpos, especially within the
constant-strain-rate creep region. This PR(S)−S relation together with the softness distribution in Figure S6 suggests that
our dynamical decomposition model should remain valid within the constant-strain-rate regime.

b)a)

Fig. S 7 PR(S) as a function of stress, σc, and position, rpos, in 10 vol% PNCs, containing small NPs with (a) neutral and (b) strong polymer-NP
interactions.
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10 Dynamical decomposition for the bulk-average dynamics of PNCs under creep
Because the change in softness and change in PR(S) is small within the constant-strain-rate regime, it is reasonable to
speculate that our dynamical decomposition model should still work within this regime. Here, we follow the dynamical
decomposition protocol outlined in the main text and plot the bulk-average PR(S) as a function of 1/T for four different
stresses, in Figure S8. As expected, PR(S) follows Arrhenius behavior at each softness and the left-extended fitting curves
share a same intersection point (indicating that ∆E and Σ decays linearly with softness). Thus, for the bulk-average
dynamics in PNCs under constant-strain-rate creep deformation, Equation 1 still holds.

a) b)

c) d)

Fig. S 8 Bulk-average PR(S) as a function of 1/T for softness values ranging from S = −2.75 (light blue) to S = 1.25 (dark blue): (a) σc = 0.3; (b)
σc = 0.4; (c) σc = 0.5; (d) σc = 0.6.
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11 Pnp as a function of softness under creep, for different positions and stresses
In Figure S9 we plot Pnp as a function of softness for different positions near the polymer-NP interface while under an
constant applied stress. Results show that the exponential relation between Pnp and S remains valid under constant-strain-
rate creep deformation. Therefore, our dynamical decomposition model can be safely expanded to systems undergoing
constant-strain-rate creep deformation and the effect of the applied stress can be described by the six parameters in our
model (Σi,∆Ei,ai).
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Fig. S 9 Pnp as a function of softness for five positions (rpos = 0.25 to 2.25σ) and the bulk region, at T = 0.40: (a) σc = 0.3; (b) σc = 0.4; (c) σc = 0.5;
(d) σc = 0.6. Different colors represents the different positions (rpos).
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12 Particle rearrangement ratio as a function of time under creep
To connect the microscopic dynamical picture to the macroscopic mechanical response, we focus on the relationship be-
tween strain and the normalized accumulated rearrangement number, Racc. Results in Figure S10 indicate that the particle
rearrangement ratio (number of rearranging monomers normalized by the total number of monomers), in each frame, is
quite stable within the constant-strain-rate creep regime. This suggests that the total number of particle rearrangements,
and therefore Racc, will increase linearly with time under constant-strain-rate creep deformation. Because strain increases
linearly with time in this regime as well, we can predict the system’s strain response from Racc using Equation 4.

Fig. S 10 Particle rearrangement ratio (Rnum/Npolymer) as a function of time for different composites, at T = 0.40.
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13 Predict strain from initial softness distribution
As we have already connected the strain to the accumulated rearrangement number, Racc, predicting Racc from softness will
enable us to predict strain response directly from the structure information. This can be achieved through the previously
proposed dynamical decomposition model. According to definition of PR(S), we have:

Racc =
1
Nt

∫ time

0

∫
∞

0

∫ S∞

S0

NPR dSdrposdt ≃ t ·

(
PI

Smax

∑
Smin

Nbulk
s PD +

4.75

∑
rpos=0.25

P∗
I

Smax

∑
Smin

NsP∗
D

)
(1)

Here, Nt is the total number of polymer particles in the composites, N is the number of particles (at certain softness
and position). Smin and Smax are the minimum and maximum softness. Nbulk

s is the number of particles (at certain softness
and position) in the bulk region and Ns is that in the near-NP region. We choose rpos = 4.75σ as the cutoff point for
near-NP region, which fully captures the deviations of the structure-dependent and independent components of monomer
rearrangement from the bulk-average value, in Figures 4 and 5. Using the result of Equation 1 we can then predict the
strain response of the PNC using Equation 4 in the main text.

Fig. S 11 Mean softness change due to elastic response as a function of stress at T = 0.40.

Theoretically, softness distribution in Equation 1 is collecting from the entire deformation process and is time depen-
dent. Thus, the last step is predicting the softness distribution during creep from the initial structure. As shown in Figure
S6, mean softness is quite stable after the initial elastic response and the width of the softness distribution is also un-
changed. This suggests that the prediction can be reframed as the prediction from initial mean softness to that right after
the elastic response. In Figure S11, we plot the mean softness after the elastic response as a function of stress at T = 0.40
and find that it grows linearly with stress.

This agrees with the finding that softness has a universal constant response to strain for disordered materials and the
elastic strain response is proportional to stress.2 These together prove that:

Selastic = w1σc +Sσc=0 (2)

where (Selastic ) is the mean softness after elastic response and (Sσc=0) is the mean softness of the undeformed PNCs.
In Figure S12, we plot the flow chart of the prediction process. f2(Racc), PR(S,rpos) and f1(σc) are corresponding to

Equation 4, Equation 3 and Equation 2 respectively. In this prediction, we have nine parameters, where Σ0, Σ1, e0, e1, k0,
k1, and w1 are functions of stress and T , and a0 and a1 are functions of stress, T , and rpos. The only input information is
the softness distribution at different positions measured in the pre-deformation PNCs.

Besides the prediction in different systems shown in the main text (Figure 6b), here we also tested it for different
systems at several different temperatures. Results are shown in Figure S13 and in good agreement with the measured
strain values.
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Fig. S 12 Flow chart of the prediction protocol: from the initial softness distribution of undeformed PNCs to the critical time

d)c)

b)a)

Fig. S 13 Predicting strain from softness at different temperatures for (a) neat polymer, (b) 10 vol% loading with small NPs and neutral polymer-NP
interactions, (c) 10 vol% loading with small NPs and strong polymer-NP interactions, and (d) 10 vol% loading with large NPs and neutral polymer-NP
interactions.

14 Numerical justification of treating NP sites as polymer sites
In previous work, we have shown that treating nanoparticle sites as polymer sites does not qualitatively affect softness
analysis in a polymer nanopillar with one NP, embedded in the center of pillar, by comparing results with varied cut-off
distances.3 Here, we take a similar method and use structure functions with Rcutoff = 1.5 and 3.5σ to calculate softness
in 10 vol% PNCs. Varying cutoff distance changes the number of NP sites included in the softness analysis. Therefore, a
significant change in softness for different cutoff values would invalidate our approximation. In Figure S14, we plot PR(S)
as a function of softness and distance to NP surface respectively. The qualitatively similar results at each cutoff distance
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indicate that our approximation is still valid in PNCs containing multiple nanoparticles.

d)c)

b)a)

Fig. S 14 Varying cutoff distance of structure functions in 10 vol% PNCs with small, strong interaction NPs: (a) PR(S) as a function of S, Rcutoff = 1.5σ ;
(b) PR(S) as a function of rpos, Rcutoff = 1.5σ ; (c) PR(S) as a function of S, Rcutoff = 3.5σ ; (d) PR(S) as a function of rpos, Rcutoff = 3.5σ .

We now need to know whether the deviation from regular dynamical decomposition near the polymer-NP interface
is due to this approximation or not. To answer this question, we draw insights from the idea of TrAdaBoost algorithm4,
which is a representative algorithm of transfer learning.

The basic idea of transfer learning is storing knowledge learned while solving one problem and applying it to a dif-
ferent but related problem. The TrAdaBoost algorithm is proposed to get rid of a fundamental assumption of traditional
machine learning, that the training set and the test set have the same distribution, which is not always true in practice. In
TrAdaBoost, a training set consists of samples from two distributions, one is the same as the test set, Ts, and the other is
not, Td . During training, the weight of samples from Ts are increased when they are mislabeled. The weights of samples
from Td , in contrast, are increased when they are correctly labeled. Using this algorithm we make the most use of samples
from Ts and also find similar samples (compared with test set) from Td . More details about this algorithm can be found in
reference4.

In this study, as shown in Figure S4, the softness distribution is different near the NP surface, as compared with the
bulk region. In other words, the training dataset (neat polymer system) and the test data set (PNCs system) have different
distributions. Thus, we divided polymers in our PNCs into two groups, polymer monomers near NPs (rpos < 2.5σ) and
polymer monomers in the bulk region. Then we mixed near-NP samples and bulk samples from the neat polymer system,
at different ratios (5% to 50% of near-NP samples), to generate different training sets. We also construct a training set
that consists only of data points from the near NP region. Using SVM as the basic classifier, we follow the protocol of
TrAdaboost for 10 iterations, and take the last iterated hyperplane as the output of our training. We then use these new
hyperplanes and calculate the softness profiles, the results of which are presented in Figure S15.

If the deviation in softness near the NP surface were caused by treating NP sites as polymer sites, then we would observe
a positive-to-negative transition of ai as we increase the ratio of near-NP samples. However, our measurements suggest
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an inverse trend, where ai remain positive for all the conditions measured, even for the PNC-learned plane. Varying the
ratio of near-NP samples will increase or decrease softness values as a whole but does not qualitatively change our results.
Thus, we believe our dynamical decomposition model is insensitive to treating NP sites as polymer sites.

e)d)

c)b)a)

Fig. S 15 Transfer learning results in 10 vol% PNCs (rp = 3σ , εpn = 1.0): (a) softness as a function of rpos with different ratios of PNC samples, at
T = 0.40. (b) Particle’s transfer-learned softness vs. bulk-learned softness, at T = 0.40. Results plotted are 500 points randomly sampled from 200
frames, each frame containing 51840 polymer monomers. The dash line represents the slope of one. (c) softness as a function of rpos, with bulk-learned
hyperplane (blue), 10%-PNC transfer learned plane (black), and PNC-learned plane (red), at T = 0.40. (d) a0 as a function of rpos, at T = 0.40. (e)
a1 as a function of rpos, at T = 0.40

.
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