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The supplementary information is divided into two sections: S1 Straight channel and S2 Annular

channel. Movies of unsteady flow states in both the straight and annular channel cases are presented

in this supplementary information. Also, more details about the contractile flows are shown, including

the average flow rate, the wall stress in the straight channel case and the wall torque in the annular

channel case. Additionally, we also show a comparison of simulation and weakly nonlinear analysis of

zero shear rate case for the straight channel in the subsection S1.5, and subsection S2.4 shows linear

analysis of the limit in which the flow in the annular channel is very slow.
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S1 Straight channel

S1.1 Oscillatory flow state

A movie of the velocity field for positive spontaneous flow (Fig. 9a) is shown in the Movie S1: stra-

posi-osci-U.gif. Note that in the title of the movie t is time in units of τ , a is activity in units of η/(τλ),

and u0 is moving velocity of the bottom plate of the straight channel (i.e. γ̇W in the main text) in

units of W/τ . The director and scalar order parameter fields for positive spontaneous flow (Fig. 9b)

are shown in the Movie S2: stra-posi-osci-Q.gif. The velocity field for negative spontaneous flow (Fig.

9c) is shown in the Movie S3: stra-negt-osci-U.gif. The director and scalar order parameter fields for

negative spontaneous flow (Fig. 9d) are shown in the Movie S4: stra-negt-osci-Q.gif.

S1.2 Oscillatory-like flow state

An example of a dynamical final state for oscillatory-like flow with γ̇ = 0 and α = 2.3. The flow

pattern is not perfectly periodic in the horizontal direction. A movie of the velocity field is shown in

the Movie S5: stra-oscilike-U.gif. A movie of the director and scalar order parameter fields is shown

in the Movie S6: stra-oscilike-Q.gif.

S1.3 Dancing flow state

Movies for the example of the dancing flow state shown in Fig. 10. A movie of the velocity field is

shown in the Movie S7: stra-danc-U.gif. A movie of the director and scalar order parameter fields is

shown in the Movie S8: stra-danc-Q.gif.

S1.4 Flow rate and wall stress of contractile fluids

The steady-state of activity-driven volumetric flow rate and average wall stress imposed by the active

flow on the bottom plates of the channel for contractile fluids.
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Figure S1: Activity-driven volumetric flow rate in contractile fluids in the straight channel. Symbols

denote the flow state and colors denote the external shear rates. The plot shows results for the two

kinds of initial conditions of the director field with a positive and negative x component.

Figure S2: The average wall stress imposed by the active flow on the bottom plates of the straight

channel σ̄W as a function of dimensionless activity α for contractile fluids. The dashed lines are

extended lines of simple shear flow. They are plotted for comparing the different slopes of simple

shear flow and unidirectional flows. The results in the figure are insensitive to the two kinds of initial

conditions for the director field, i.e., ±x splay-like alignment.
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S1.5 Comparison of simulation and weakly nonlinear analysis of zero shear

rate case

Figure S3: The flux of the flows near the critical activity. Lines denote the results from weakly

nonlinear analysis. Symbols denote the finite element results.

Two results match each other well for the case when there is no external shear rate and activity is just

above the the critical activity.
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S2 Annular channel

S2.1 Oscillatory flow state

A movie of the velocity field for positive spontaneous flow (Fig. 15e) is shown in the Movie S9: annu-

osci-U.gif. Note that in the title of the movie t is time in units of τ , a is activity in units of η/(τλ),

and ω is rotation frequency of the inner boundary of the annular channel in units of 1/τ . The director

and scalar order parameter fields for positive spontaneous flow (Fig. 15f) are shown in the Movie S10:

annu-osci-Q.gif.

S2.2 Dancing flow state

A movie of the velocity field of the dancing flow state (Fig. 15g) is shown in the Movie S11: annu-

danc-U.gif. Director and scalar order parameter fields of the dancing flow state (Fig. 15h) are shown

in the Movie S12: annu-danc-Q.gif.

S2.3 Flow rate and wall torque of contractile fluids

Steady-state of activity-driven volumetric flow rate and wall torque imposed by the active flow on the

inner disk of the annular channel in contractile fluids.

Figure S4: Activity-induced flux for contractile fluids in dimensionless units of vθτ/W as a function

of activity in the annular channel. The plot shows results for the two kinds of initial conditions of the

director field with a positive and negative θ component.
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Figure S5: The wall torque of different active flows normalized by the passive flow in contractile fluids

in the annular channel. The results in the figure are insensitive to the two kinds of initial conditions

for the director field, i.e., clockwise and counterclockwise splay-like alignment.

S2.4 Annular channel: Linear analysis of curvature at low shear rate

In this section we study the limit in which the flow in the annular channel is slow enough that the

induced order is small, S � 1. For slow enough flow, it is valid to neglect the nonlinear terms in eqn

(4)). On the one hand, this analysis offers a theoretical explanation of some of the observations in Sec.

5; on the other hand, it gives some insight into the role of the curvature of the boundaries, which we

did not vary in the Sec. 5. For convenience, here we restate the modified Stokes equation (eqn (3) )

in dimensionless form, along with the dimensionless form of the steady linearized equation for Q:

0 = −∇p+∇2v − α

λ
∇ · Q (S1)

0 = −Q + `2∇2Q + 2λE, (S2)

As in our numerical calculations, we use the width W of the channel as the unit of length. Since we

seek to study the Couette-like flow state, we assume v = vθ(r)θ̂. Note that this flow is incompressible.

We also suppose that p, Qrr, and Qrθ are functions of radius only. With these assumptions, the

rr component of eqn (S2) is homogeneous, which together with the Neumann boundary conditions

∂rQrr = 0 at r = R/W and r = R/W +1 implies Qrr = 0. Since the radial component of the modified

Stokes equation(eqn (S1) with Qrr = 0 implies that the pressure gradient vanishes, we take p = 0.

To solve for the velocity and order parameter fields, we take the divergence of eqn (S2) and combine
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Figure S6: Analytical results for flow velocity of the Couette-like 1 state in an annular channel with

weak order for ` = 0.1, λ = 1, and various values of R/W for (a) a contractile fluid with α = −0.9 and

(b) an extensile fluid with α = 0.99. The dashed lines in the panel (a) show the results for Newtonian

flows (α = 0) for comparison.

with eqn (S1) with p = 0 to find

∇2

(
∇2 − 1

ξ2

)
v = 0, (S3)

where ξ2 = `2/(1− α). To focus our attention on the Couette-like states only, we restrict our analysis

to α < 1 in this section. Thus,

vθ = c1r + c2/r + c3I1(r/ξ) + c4K1(r/ξ), (S4)

where the ci are constants to be determined, and I1(x) and K1(x) are modified Bessel functions.

Inserting the velocity field eqn (S4) into the rθ component of eqn (S2),

0 = `2
(
Q′′rθ +

1

r
Q′rθ −

4

r2
Qrθ

)
−Qrθ + λ

(
v′θ −

vθ
r

)
, (S5)
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Figure S7: Dependence of normalized wall torque on R/W for different α from linear analysis at low

shear with ` = 0.1 and λ = 1. The colors denote different activities.

yields

`2
(
Q′′rθ +

1

r
Q′rθ −

4

r2
Qrθ

)
−Qrθ

=
λ

ξ

[
2c2ξ

r2
− c3I2(r/ξ) + c4K2(r/ξ)

]
, (S6)

which has general solution

Qrθ = c5I2(r/`) + c6K2(r/`)− 2c2λ/r
2

− c3
λξ

`2 − ξ2
I2(r/ξ) + c4

λξ

`2 − ξ2
K2(r/ξ). (S7)

Inserting this solution into the modified Stokes equation [eqn (S1)] shows that c5 = c6 = 0. The rest

of the integration constants are determined by the no-slip boundary conditions on the (dimensionless)

velocity, vθ(R/W ) = ωτR/W and vθ(R/W + 1) = 0, and the Neumann boundary conditions on the

order parameter field Q′rr(R/W ) = Q′rr(R/W + 1) = 0. The complete formulas are too complicated to

display, but we plot the velocity in Fig. S6 for various ratios of R/W for a representative contractile

case (top panel) and extensile case (bottom panel). In both cases, the flow velocity approaches a

linear profile as R/W becomes large, as expected, since in that limit the curvature of the annulus

becomes unimportant, and the flow approaches simple shear flow. For the contractile case, Fig. S6a,

the velocity profile is close to the Newtonian result, with the agreement between the two cases getting

better as R/W increases. For the extensile case, the velocity curves for different values of R/W get

closer to each other as α increases, becoming very close to the linear profile around α = 0.885. Above

this value of activity, the order of the curves reverses, with the linear curve lying below all the other

curves. When α gets very close to unity and R/W is small, the maximum velocity is not at the wall,

i.e. the flow continuously changes from the Couette-like 1 state to the Couette-like 2 state [Fig. S6b].

Fig. S7 shows the total torque M = 2πR2σrθ on the circle r = R as a function of R/W . Note that
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the limit of a straight channel is almost obtained when R becomes comparable to W . The torque

for a contractile fluid is higher than the passive value since contractile fluids effectively increase the

shear viscosity. Likewise, the torque for an extensile fluid is less than the passive value. The torque

approaches the passive value when R � W . Note that since we use W as the unit of length, the

limit R�W corresponds to making the inner cylinder of vanishing thickness. When R < `, the term

`2∇2Q dominates eqn (S2), and therefore Q → 0. In this limit, the active force vanishes, and flow is

Couette flow.

It is informative to find the velocity and the order parameter field in the limit R�W , where the

curvature of the annulus is small. Rather than taking the limit of the formulas used to make Figs. S6

and S7, it is simplest to solve the equations directly using regular perturbation theory in powers of

W/R. Reinstating the dimensions and writing r = R+ y, we find

vθ = ωR
(

1− y

W

)
− ωy

2

(
1− y

W

)
+

2α`2ωW

1− α

[
1− cosh [(1− 2y/W )/ξ]

cosh[1/(2ξ)]

]
(S8)

Qrθ = −λωτR
W

+
λωτ

2

[
4y/W − 3 + 4ξ

sinh [(1− 2y/W )/ξ]

cosh[1/(2ξ)]

]
. (S9)

The first terms of eqns (S8) and (S9) correspond to the velocity and order parameter field, respectively,

of a straight channel with an infinitesimal imposed shear rate γ̇ = ωR/W . The remaining terms are

the corrections due to the nonzero curvature of the annular channel. Unlike our weakly analysis of the

active flow in the straight channel (Sec. 4.3), which had spontaneous flow in either direction, here we

see that the component of flow driven by the activity has a definite sign, and is the same direction as

externally imposed flow for extensile fluids.
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