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I. IMAGE OF AN ELECTROSTATIC
MULTIPOLE NEAR A CONDUCTING OR AN

INSULATING PLANE WALL

FIG. 1. Image

In this part, we give the relation between a multipole
Bn,m and its image B′

n,m due to a grounded or insulating
plane wall. These results follow Washizu and Jones [1]
and are summarized here. The electric potential can be

written in the following form

Φ =
Bn,m

rn+1
Pm
n (cos θ) cos(mϕ)+

B′
n,m

r′n+1
Pm
n (cos θ′) cos(mϕ′).

(1)

a. Grounded plane wall In the case of grounded
wall, the boundary condition on the plane wall is Φ = 0.
Bn,m and B′

n,m are symmetric about the wall. Conse-
quently, on the wall, we have r = r′, θ + θ′ = π, and
ϕ = ϕ′. Substituting into Eq. 1 yields

Bn,m

rn+1
Pm
n (cos θ) cos(mϕ)+

B′
n,m

rn+1
Pm
n (− cos θ) cos(mϕ) = 0

Using the identity of associated Legendre polynomials
Pm
n (−x) = (−1)n+mPm

n (x), we have

B′
n,m = (−1)n+m+1Bn,m. (2)

b. Insulating plane wall In the case of insulating
wall, the boundary condition on the plane wall is
∂Φ/∂z = 0. The partial derivative between with respect
to z could be calculated using the following equation,

∂

∂z

[
Pm
n (cos θ)

rn+1
cos(mϕ)

]
= −(n−m+1)

Pm
n+1(cos θ)

rn+2
cos(mϕ).

On the insulating wall, we have

Bn,m

[
−(n−m+ 1)

Pm
n+1(cos θ)

rn+2
cos(mϕ)

]
+B′

n,m

[
−(n−m+ 1)

Pm
n+1(− cos θ)

rj+2
cos(mϕ)

]
= 0.

Same as before, using the identity of associated Legendre
polynomials Pm

n (−x) = (−1)n+mPm
n (x), we have

B′
n,m = (−1)n+mBn,m. (3)
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II. RE-EXPANSION OF THE SPHERICAL
HARMONICS

FIG. 2. Re-expansion

In this section, we present the re-expansion of spher-
ical harmonics from spherical coordinates (r′, θ′, ϕ′) to
coordinates (r, θ, ϕ). These formulas are derived by
Washizu and Jones [1]. Cartesian coordinates (x′, y′, z′)
and (x, y, z) are also introduced as auxiliary. z-axis of
these two Cartesian coordinates are collinear and in the
same direction. As shown in FIG. 2, ∆z is the distance
between origins of two coordinates.

We use ψn,m and ϕn,m to note spherical harmonics
with singularity at r′ = 0 and r = ∞, respectively,

ψl,m = r′−l−1Pm
l (cos θ′) cos(mϕ′),

ϕn,m = rnPm
n (cos θ) cos(mϕ).

For ∆z > 0, which means that the coordinates (r′, θ′, ϕ′)
is above coordinates (r, θ, ϕ), the re-expansion is

ψn,m =

∞∑
l=m

(−1)n−m (n+ l)! (∆z)
−(n+l+1)

(n−m)!(l +m)!
ϕl,m.

For ∆z < 0, which means that the coordinates (r′, θ′, ϕ′)
is below coordinates (r, θ, ϕ) the re-expansion is

ψn,m = −
∞∑

l=m

(−1)n−m (n+ l)! (∆z)
−(n+l+1)

(n−m)!(l +m)!
ϕl,m.

They could be rewritten in a more compact form

ψn,m =

∞∑
l=m

(−1)n−m (n+ l)!

(n−m)!(l +m)!

(∆z)
−(n+l)

|∆z|
ϕl,m.

(4)
It should be noted that Eq. 4 converges within the region
r < ∆z.

III. ELECTRIC POTENTIAL Φ2

In this section, we give the expression of the distur-
bance electric potential outside the particle, Φ̂2, using
the superposition of multipole images. The electric po-
tential could be written as

Φ̂2 = ϕ̂B +
∑

Images

ϕ̂I (5)

The first term on the R.H.S. of Eq. 5 is the disturbance
field due to the original multipole Bn,m,

ϕ̂B =

∞∑
n=m

Bn,m

rn+1
Pm
n (cos θ) cos(mϕ),

where (r, θ, ϕ) is the spherical coordinates originated at
the particle center. The second term on the R.H.S of Eq.
5 is the sum of the disturbance field due to all images.
For an arbitrary image I, located at zI with multipole

moments In,m, the disturbance field ϕ̂I is

ϕ̂I =

∞∑
n=m

In,m

rn+1
I

Pm
n (cos θI) cos(mϕI),

where (rI , θI , ϕI) is the spherical coordinates originated
at the particle center.

Using the re-expansion formulae in Eq. 4, ϕ̂I is re-
expanded in coordinates (r, θ, ϕ) in the following form

ϕ̂I =

∞∑
n=m

∞∑
l=m

D̄
(m)
n,l Bl,mr

nPm
n (cos θ) cos(mϕ),

where the re-expansion coefficients D̄
(m)
n,l are

D̄
(m)
n,l = (−1)l−m Il,m

Bl,m

(n+ l)!

(l −m)!(n+m)!

(∆zI)
−(n+l)

|∆zI |
.

Substituting the re-expanded ϕ̂I into Eq. 5, we obtain

Φ̂2 =

∞∑
n=m

Bn,m

rn+1
Pm
n (cos θ) cos(mϕ)

+
∑

Images

∞∑
n=m

∞∑
l=m

D̄
(m)
n,l Bl,mr

nPm
n (cos θ) cos(mϕ).

The electric field outside the particle could also be writ-
ten as the general solution of Laplace’s equation,

Φ̂2 =

∞∑
n=m

(
Bn,m

rn+1
+Mn,mr

n

)
Pm
n (cos θ) cos(mϕ).

Equating two expressions gives

Mn,m =

∞∑
l=m

N
(m)
n,l Bl,m,
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where coefficients N
(m)
n,l are defined as

N
(m)
n,l =

∑
Images

D̄
(m)
n,l .

It should be mentioned that in the expressions of D̄
(m)
n,l

the ratio Il,m/Bl,m = ±1. The analysis on the image
system in the main text gives the multipole moments
and locations of all the images. We explicitly give the

expression of N
(0)
n,l for the normal electric filed and N

(1)
n,l

for the tangential electric field,

N
(0)
n,l =

(n+ l)!

l!n!

[
1

(−2δc)n+l+1
+

∞∑
k=1

(−1)l + (−1)n

(2kδw)n+l+1
− 1

(2kδw − 2δc)n+l+1
− (−1)n+l

(2kδw + 2δc)n+l+1

]
, (6)

N
(1)
n,l = − (n+ l)!

(l − 1)!(n+ 1)!

[
1

(−2δc)n+l+1
+

∞∑
k=1

(−1)l + (−1)n

(2kδw)n+l+1
− 1

(2kδw − 2δc)n+l+1
− (−1)n+l

(2kδw + 2δc)n+l+1

]
. (7)

IV. ASYMPTOTIC SOLUTION FOR LARGE
GAP BETWEEN TWO WALLS

The non-monotonic behavior of the force coefficient Cf

presented in the main text is superising. In the main
text, it is concluded that this behavior is the result of
increasing dipole moment as the top wall approaches the
particle. In this section, we present the asymptotic solu-
tion when δw ≫ 1. Without loss of generality, we assume
the particle is close to the bottom wall, δc ∼ O(1).

From Eq. 6 and Eq. 7, it is clear that N
(m)
n,l could be

written as

N
(m)
n,l = X

(m)
n,l + Y

(m)
n,l ,

where X
(m)
n,l stands for the leading order term that is

independent of δw, and Y
(m)
n,l is the correction term that

comes from sums on the R.H.S of Eq. 6 and Eq. 7. We
are only looking for the leading order correction,

Y
(m)
n,l =

1

δηw
Z

(m)
n,l + h.o.t.

It could be shown that η = 3 in both cases. The origi-
nal multipole Bl,m could also be expressed as a regular
perturbation series,

Bl,m = (B0)l,m +
1

δ3w
(B3)l,m + h.o.t.

(B0)l,m and (B3)l,m are solved by substituting N
(m)
n,l and

Bl,m into the equation systems for the original multipole
and equating like powers of 1/δw. The interaction force
have the one-wall solution as the leading order term and
a correction term of O(1/δ3w),

Cf ∼ Cf0 +
1

δ3w
Cf3.

Equations for the normal and tangential electric field are
listed in the following two subsections respectively.

A. Normal electric field

It is mentioned that the net charge on the particle is
zero and terms with subscript n = 0 or l = 0 do not
contribute to the interaction force. From Eq. 6, it is
obvious that

X
(0)
n,l =

(n+ l)!

l!n!
(−2δc)

−(n+l+1).

The leading order correction term that contributes is

Y
(0)
1,1 ,

Y
(0)
1,1 = − 1

δ3w

∞∑
k=1

1

k3
+ h.o.t ∼ −ζ(3)

δ3w
,

where ζ(x) is the Riemann zeta function. It could be ver-

ified that Y
(0)
1,1 is the only term of O(1/δ3w). The asymp-

totic behavior of N
(0)
n,l is

N
(0)
n,l ∼ X

(0)
n,l +

1

δ3w
Z

(0)
n,l , (8)

where Z
(0)
n,l is

Z
(0)
n,l =

{
−ζ(3) (n, l) = (1, 1),

0 otherwise.

(B0)l,m and (B3)l,m are solved from the following equa-
tions

O(1) :

∞∑
l=1

[
(χ− 1)nX

(0)
n,l + (nχ+ n+ 1)δn,l

]
(B0)l,0

= (χ− 1)Gn,0,

O
(

1

δ3w

)
:

∞∑
l=1

[
(χ− 1)nX

(0)
n,l + (nχ+ n+ 1)δn,l

]
(B3)l,0

= −(χ− 1)n

∞∑
l=1

Z
(0)
n,l (B0)l,0 .
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Substituting into the equation for the electric force in the
main text, we obtain the asymptotic behavior of interac-
tion force on the particle

Cf ∼Cf0 +
1

δ3w
Cf3,

Cf0 =4π

∞∑
n=1

Kn
n+ 1

2n+ 1
(M ′

0)n,0 (M
′
0)n+1,0 ,

Cf3 =4π

∞∑
n=1

Kn
n+ 1

2n+ 1

[
(M ′

0)n,0 (M3)n+1,0

+(M3)n,0 (M
′
0)n+1,0

]
,

where M coefficients are,

Mn,0 ∼ (M0)n,0 +
1

δ3w
(M3)n,0 ,

(M0)n,0 =

∞∑
l=1

X
(0)
n,l (B0)l,0

(M3)n,0 =

∞∑
l=1

X
(0)
n,l (B3)l,0 +

∞∑
l=1

Z
(0)
n,l (B0)l,0

B. Tangential electric field

In the case of tangential electric field, the asymptotic
solution could be obtained following the same procedure.

The leading order term X
(1)
n,l is

X
(1)
n,l = − (n+ l)!

(l − 1)!(n+ 1)!
(−2δc)

−(n+l+1).

The correction term is still of O(1/δ3w),

N
(1)
n,l ∼ X

(1)
n,l +

1

δ3w
Z

(1)
n,l ,

where Z
(1)
n,l is

Z
(1)
n,l =

{
ζ(3)/2 (n, l) = (1, 1),

0 otherwise.

The leading order multipole (B0)l,1 and correction (B3)l,1
could be solved from following linear systems,

O(1) :

∞∑
l=1

[
(χ− 1)nX

(1)
n,l + (nχ+ n+ 1)δn,l

]
(B0)l,1

= (χ− 1)Gn,1,

O
(

1

δ3w

)
:

∞∑
l=1

[
(χ− 1)nX

(1)
n,l + (nχ+ n+ 1)δn,l

]
(B3)l,1

= −(χ− 1)n

∞∑
l=1

Z
(1)
n,l (B0)l,1 .

The asymptotic behavior of interaction force on the par-
ticle is

Cf ∼Cf0 +
1

δ3w
Cf3,

Cf0 =2π

∞∑
n=1

Kn
n(n+ 1)(n+ 2)

2n+ 1
(M ′

0)n,1 (M
′
0)n+1,1 ,

Cf3 =2π

∞∑
n=1

Kn
n(n+ 1)(n+ 2)

2n+ 1

×
[
(M ′

0)n,1 (M3)n+1,1 + (M3)n,1 (M
′
0)n+1,1

]
,

where M coefficients are,

Mn,1 ∼ (M0)n,1 +
1

δ3w
(M3)n,1 ,

(M0)n,1 =

∞∑
l=1

X
(1)
n,l (B0)l,1 ,

(M3)n,1 =

∞∑
l=1

X
(1)
n,l (B3)l,1 +

∞∑
l=1

Z
(1)
n,l (B0)l,1 .

V. CONVERGENCE

FIG. 3. The convergence of force coefficient Cf in the case of
normal electric field for different configurations.

In this section, we present the convergence of our an-
alytical solution in the normal electric field. In practi-
cal computation procedure, we truncate the infinit sum
Eq.25 in the main text and keep finite number terms. The
number is noted as Nmax. In FIG. 3, we plot the force
coefficient Cf as a function of Nmax. It could seen from
the figure that all the solutions converge when enough
terms are kept.
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