Supporting Information: Non-Close-Packed Hexagonal Self-Assembly of Janus Nanoparticles on Planar Membranes

Yu Zhu, Abash Sharma, Eric J. Spangler, and Mohamed Laradji^a ¹Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA

SI. JANUS NANOPARTICLE MODEL

FIG. S1. Configuration of an equilibrated spherical Janus NP with D = 20 nm. a beads are yellow, and tend to adhere to the lipid membrane, b beads are blue and interact repulsively with the lipid beads. The cyan c-bead, at the center of NP, and is connected to all other beads by harmonic bonds (not shown for clarity) to maintain a spherical shape of the Janus NP. In this case, the Janusity J = d/D = 0.5, where d is the height of the spherical cap that interacts attractively with the lipid head beads.

SII. RELATIONSHIP BETWEEN ξ AND \mathcal{E}

FIG. S2. The adhesion energy density, ξ , versus the interaction strength, \mathcal{E} , between a NP n_a -bead and a lipid h-bead. The red line indicates that the energy density $\xi = 4.11k_BT/\text{nm}^2$ corresponds to $\mathcal{E} = 4.0\epsilon$.

 $^{^{\}rm a}$ mlaradji@memphis.edu

SIII. RADIAL DISTRIBUTION FUNCTION AT DIFFERENT VALUES OF THE ADHESION STRENGTH

FIG. S3. Radial distribution function of the JNPs' centers at different values of ξ . This figure demonstrates that at high values of ξ , the effect of adhesion strength on the hexagonal order of the JNPs is weak.

SIV. ENDOCYTOSIS AND SELF-ASSEMBLY OF THE JNPS AT HIGH DENSITIES

FIG. S4. An equilibrium snapshot in the case of an initial high density of the JNPs on the membrane, corresponding to $\rho = 5.91 \times 10^{-4} \text{ nm}^{-2}$. Some of the JNPs cluster then endocytosis. The remaining JNPs are self-assembled into a triangular lattice. Here $\xi = 4.11 k_B T/\text{nm}^2$.