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Virtual triangulation of the network:

The 364 quadrilaterals are virtually triangulated by finding the center of

mass of each of the quadrilateral and virtually connecting the center of mass

to each of the vertices of that quadrilateral.

Fig. S 1: Snapshot of the virtually triangulated network

We introduce the hydrostatic force F⃗ h
k on vertex k as the vector sum of

the area of the triangles that meet at this vertex. m = 28 for the two poles,

m = 6 for vertices that lie on the latitudinal circles next to the poles, and

m = 8 for all other vertices.

F⃗ h
k = p

m∑
i=1

ain̂i (1)

Where a⃗i = ain̂i is the area vector of the ith triangle. The total area of the

network is given by

A⃗ =
1456+56∑

i=1

a⃗i (2)

Integration algorithm

d

dt
(eζt v⃗k) = eζtF⃗k

2



Integrating both sides of this equation,∫ t

−∆/2

dt′
d

dt′
(eζt

′
v⃗k) =

∫ t

−∆/2

dt′ F⃗k e
ζt′ (3)

where ∆ is the MD time step which we take to be much shorter than the

viscous damping time (mass/(friction coefficient)).

Solving equation 3, we get the following expressions for updating the

velocity and position of vertex K:

v⃗k((n+
1

2
)∆) = v⃗k((n− 1

2
)∆)e−ζ∆ + e−ζ∆

2 ∆ F⃗k(r⃗k(n∆)) (4)

v⃗k(t) = v⃗k(−
∆

2
)e−ζ(t+∆/2) + e−ζ t

∫ t

−∆/2

dt′F⃗k(t
′)eζt

′

=⇒ v⃗k(
∆
2
) = v⃗k(−∆

2
)e−ζ∆ +∆F⃗k(r⃗k(t = 0))e−ζ∆

2

In general,

v⃗k((n+
1

2
)∆) = v⃗k((n− 1

2
)∆)e−ζ∆ + e−ζ∆

2 ∆ F⃗k(r⃗k(n∆)) (5)

where n is the number of MD time steps.

The equation for the position can be written as,

r⃗k(t) = r⃗k(0) +

∫ t

0

v⃗k(t
′)dt′

At t = ∆,

r⃗k(∆) = r⃗k(0) + ∆ v⃗k(∆/2)

In other words,

r⃗k((n+ 1)∆) = r⃗k(n∆) +∆ v⃗k ((n+
1

2
)∆) (6)

We are using equation 5 and 6 for updating velocities and positions of

the vertices
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Representation of the angles between the tan-

gent of the neighboring springs:

θi is the angle between the tangents of ith and i−1th spring. θi+1 is the angle

between the tangents of ith and i+ 1th spring.

Fig. S 2: Representation of the angles between the tangents of the neighbor-

ing springs

Steady state configuration of the network with

p0 = 0.1

The network takes an oblate spheroid shape in steady state with p0 = 0.1, in

the absence of active excitations. The distance between two poles (D) and

the diameter of the equatorial plane (2R) are marked. The ratio of D/2R

represents the aspect ratio of the shape.
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Fig. S 3: Steady state configuration of the network with p0 = 0.1 before

active excitations are switched on.

Model 2. Curvature-dependent relaxation of

activation: pressure-induced discontinuous tran-

sition from prolate to oblate ellipsoids

We begin again from the spheroidal configuration of the network at pressure

p0 = 0.1 (Figure S3). Just as in model 1 activity is switched on at t = 500

and the elastic constants of all springs whose instantaneous curvature is lower

than χc = 0.05 are reduced from 1 to 0.05. Simultaneously, the hydrostatic

pressure is dropped from 0.1 to some lower value, p. If the curvature of a

spring goes above χc in the course of dynamics, the spring constant of that

spring returns to its equilibrium value Keq = 1.
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Fig. S 4: Model 2: (a) Area A and (b) aspect ratio D/2R as a function of

time for p = 0.05 (black) and p = 0.09 (red).

The area and the aspect ratio of model 2 are plotted as a function of time

in Figures S4 (a) and (b) respectively, for p = 0.05 and p = 0.09. Slight

differences between models 1 and 2 are observed at lower pressure, p = 0.05:

in particular, the introduction of curvature-dependent relaxation in model 2

leads to lower area and aspect ratio compared to model 1 (Figure 3).
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Fig. S 5: Model 2: area A and aspect ratio D/2R are shown as a function

of pressure. The location of the discontinuous transition is shown by the

vertical broken green line. Snapshots of steady state configurations on both

sides of the transition are presented in the lower panel (the snapshots are not

to scale).

In Figure S5 we present the values of the area (black points) and the

aspect ratio (red squares) in the final steady state of the actively excited

network, for pressures in the range from 0.05 to 0.09, in the case of model

2. Similarly to model 1, a discontinuous transition from prolate to oblate

ellipsoidal shape (accompanied by a jump of the total area of the network)
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is observed between p = 0.07 and p = 0.071 (the dashed green vertical line

in Figure S5). Snapshots of the steady state shapes of the system on both

sides of the transition, at p = 0.07 and p = 0.071, are shown in the lower

panel. Comparison of Figures 4 and S5 shows that the transition is shifted to

slightly higher pressures and that the aspect ratios of the prolate ellipsoids

for p < pc are lower in model 2 than in model 1.

Fig. S 6: Model 2: Fractions of longitudinal and latitudinal activated springs

in the excited steady state, as a function of pressure p.

In Figure S6 we present the fractions of activated longitudinal and lati-

tudinal springs for different pressures in the range 0.05 − 0.09. Comparison

with Figure 6 shows that relaxation does not affect the size of the jump in

the fraction of excited latitudinal springs but increases the discontinuity in

the fraction of excited longitudinal springs across the transition.
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Model 3: Curvature Distributions

Fig. S 7: Model 3: Curvature distributions of (a) longitudinal and (b) latitu-

dinal springs below and above pc1, at p = 0.104 and p = 0.105, respectively.

Fig. S 8: Model 3: Curvature distributions of (a) longitudinal and (b)

latitudinal springs at p = 0.13 and p = 0.14.

Fig. S 9: Model 3: Curvature distributions of (a) longitudinal and (b)

latitudinal springs at p = 0.175 and p = 0.18.
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Fig. S 10: Model 3: Curvature distributions of (a) longitudinal and (b) lati-

tudinal springs below and above pc2, at p = 0.339 and p = 0.34, respectively.

Movies:

M1: Model 1: Time evolution of the network to steady state with p = 0.09.

Initially longitudinal springs are excited, but as swelling proceeds, latitudi-

nal springs also get excited which leads to a runaway radial expansion of the

network normal to the polar axis.

M2: Model 1: Time evolution of the network to steady state with

p = 0.05. Swelling of the network under this comparatively lower p value

do not activate the latitudinal springs. The activation of the longitudinal

springs leads to a prolate shape of the network.

M3: Model 1: The time evolution of the network to steady state for

p = 0.0653, just before the transition to happen. Time evolution of the net-

work at p = 0.0653 is very much similar to p = 0.05 (Movie M2) .

M4: Model 1: The time evolution of the network to steady state for

p = 0.0654, just after the transition happens. Initially the activation of the

longitudinal springs leads to a transient prolate shape of the network. But as

the swelling progress, the latitudinal springs get activated and a dramatically

swollen oblate spheroid results.

M5: Model 3: The time evolution of the network to steady state for

p = 0.02. Since at t=0, the curvatures of most of the springs lie above χc,

the activation of the springs leads to contraction of the network, which fur-
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ther increases the curvature of the springs. The shrinking of the area becomes

a runaway process which ultimately relaxes to oblate spheroid.

M6: Model 3: The time evolution of the network to steady state for

p = 0.2. Contraction of most of the activated springs is opposed by the

increment of pressure. The elongation of the longitudinal springs leads to a

prolate spheroid shape of the network.

M7: Model 3: The time evolution of the network to steady state for

p = 0.4. At this high pressure value, the latitudinal springs also get activated

along with longitudinal springs. This leads to an oblate spheroid shape of

the network.
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