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Part I: Supplementary Figure 1 

 

Fig. S1. Polarization textures probed by PLM, SHG, and SHG-I microscopy. (a) The PLM observation 

of two types of NF droplets formed by RM-OC2. The yellow double arrow donates the rubbing direction. (b-e) PLM 

images of an NF droplet with the CV-type structure under the crossed polarizers (b), inserting a quarter-wave plate 

whose slow axis donated by orange double arrows (c), rotating one of the polarizers (d), and removing the analyzer 

(e). (f-I) PLM images of an NF droplet with the L-type structure under the crossed polarizers (f), inserting quarter-

wave plate (g), rotating one of the polarizers (h), and removing the analyzer (i). (j-n) SHG and SHG-I images of an 

NF droplet with CV-type structure. The green double arrow donates the polarization of the laser that excites the SHG 

or SHG-I signal. (k-o) SHG and SHG-I images of an NF droplet with L-type polarization topology. Two polarization 

topologies were reconstructed in NF droplets: CV-type (p) and L-type (q). Scare bare: 10 μm. 
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Part II: Reconstruction of the polarization fields 

Experimentally, we identified two distinct polarization topologies in pancake-like confined spaces 

within both RM-OC2 and Nt4 ferroelectric nematic liquid crystal systems (Fig. S1(a)). We initially need to 

reconstruct the corresponding polarization fields to clarify their topological structures. The polarization 

structure displays a Maltese-cross pattern at the droplet's periphery during the transition from the isotropic 

(Iso) state to the ferroelectric nematic state. However, there is no extinction at the droplet’s core areas under 

polarizing light microscopy (PLM) with crossed polarizers (Fig. S1(b)). This implies a distinction in the 

orientation of the directors in these two areas. Inserting a quarter-wave plate between the crossed polarizers, 

as illustrated in Fig. S1(c), causes a color change from green to blue in the first and third quadrants 

(excluding the areas near the center’s singularity). This indicates a decrease in optical retardation, 

suggesting that the orientation of directors in these regions is approximately perpendicular to the slow axis 

of the quarter-wave plate (yellow double arrows). Conversely, a green-yellow color in the second and fourth 

quadrants signifies an increase in optical retardation, implying that the orientation of directors is 

approximately parallel to the slow axis of the quarter-wave plate. Furthermore, by counterclockwise 

rotation of one of the polarizers, the Maltese-cross pattern at the droplet’s periphery rotates in the same 

direction (Fig. S1(d)), signifying a topological surround number of +1 in the polarization field in this region. 

Upon removal of one of the polarizers, a singularity is present only in the droplet center (Fig. S1(e)), 

indicating continuity in the director field elsewhere. Based on the PLM images, the initial director field of 

the droplet appears to be a concentric vortex-like structure. The core region exhibits a different director 

orientation than the periphery, with a continuous transition between the two. As the droplet grows, we 

observe the emergence of another topology (Fig. S1(a) and Figs. S1(f)-(i)). Comparison of PLM images 

reveals that the directors' orientation in this droplet is similar to the preceding one, except for the area near 

the topological declination. After inserting the quarter-wave plate, the colors on the two sides of the 

declination differ significantly (Fig. S1(g)), indicating a difference in directors’ orientation between the two 

sides. Based on the above PLM experimental data, the corresponding director fields for each of the two 

types of droplets can be reconstructed by using 4×4 matrix method. This method is based on the Berreman’s 

equation, i.e.,  

𝜕Ψ

𝜕z
= 𝑖

𝜔

𝑐
ΔBΨ. (S1) 

Ψ represents a vector whose elements are the electric field components (𝐄) of light and magnetic field 

components (𝐇) of light, i.e., Ψ = [𝐸𝑥 , 𝐸𝑦, 𝐻𝑥, 𝐻𝑥]. 𝜔 is the angular frequency of the light. 𝑐 is the speed 

of light in a vacuum. ΔB is a 4×4 matrix that contains information about the material's dielectric constant 

and refractive index, i.e., 

ΔB =

[
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𝜀𝑥𝑧

𝜀𝑧𝑧]
 
 
 
 
 
 
 

. (S2) 

𝐾𝑥𝑥 is defined as 𝐾𝑥𝑥 ≡ 𝑛𝑖 sin𝜃𝑖, where 𝑛𝑖 is the refractive index of air (or an ambient), and 𝜃𝑖 shows the 

angle of incidence. The solution of the Berreman’s equation has the form  
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Ψ(𝑑) = Ψ(0)𝑒−𝑖
𝜔
𝑐
ΔB𝑑 . (S3) 

𝑑 is the sample thickness. Ψ(𝑑) and Ψ(0) are the tangential components of 𝐄 and 𝐇 of the outgoing and 

incident light, respectively. In our reconstruction process, we initially derive an initial rough director field 

through PLM image analysis. Subsequently, we defined the index of refraction 𝑛𝑖𝑗 and dielectric constant 

tensor 𝜀𝑖𝑗 for the NF material. The birefringence of the NF LCs was set to be 0.21 (𝑛o = 1.7 and 𝑛e = 1.49). 

Combined with the director field orientation from the previous step, the index of refraction 𝑛𝑖𝑗 as well as 

the dielectric constant tensor 𝜀𝑖𝑗 can be calculated for each director (Note that 𝜀𝑖𝑗 = 𝑛𝑖𝑗
2). Then, we defined 

the light source information. We set the wavelength 𝜆 range of the light source to be 380 nm ~ 780 nm, so 

the corresponding angular frequency 𝜔 range is 2.42 × 1015 Hz ~ 4.96 × 1015 Hz (Note that 𝜔 = 2𝜋𝑐/𝜆). 

The angle of incidence was set to be 𝜃𝑖 = 0. The sample thickness 𝑑 is 5 μm. The refractive index of air 

and LC cells were assumed to be 1 and 1.5, respectively. Substituting the above information into the 

Berreman's equation, we obtain the transfer matrix 𝐓p between the incident and the outgoing light, which 

is 

𝐓p = 𝑒−𝑖
𝜔
𝑐
ΔB𝑑 (S4) 

Using Eq. (S4), we calculate the corresponding outgoing light Ψ(𝑑) and subsequently obtain the fitted 

PLM images. Finally, we iteratively optimize the structure of the director field using the Monte Carlo-

simulated annealing algorithm, aligning the fitted PLM image with the actual PLM image. This process 

results enables us to obtain the director field of the NF droplet.  

Later, both of the aforementioned topological patterns in the NF droplets manifest as polarization 

structures, as evidenced by second harmonic generation (SHG) microscopic images (Figs. S1(j) and (k)). 

Figs. S1(l)-(o) depict the SHG images of the CV- and L-type droplets under two interference conditions, 

where the phase of the SH signal of a reference quartz plate is shifted by 𝜋. The SH signal alternates 

between the upper and lower parts of the two types of droplets, indicating a reversal in the polarization 

orientation of these two halves. Combining these SHG experimental data then allows us to derive the final 

polarization structures (Figs. S1(p) and (q)). 

Part III: Modelling of 2D polarization fields 

We establish the mathematical expressions for the 2D polarization fields of the CV-type and the L-

type structures according to the reconstruction results in Figs. S1(p) and (q). The director field is represented 

by a unit vector of 𝐧 = (cos𝜑 cos𝜓 , sin𝜑 cos𝜓 , sin𝜓). 𝜑 and 𝜓 are the azimuth and elevation angles for 

the director. 

The director field of the CV-type structure is modeled by using 

𝜑 = 𝜃 + 𝑘𝑟 + 𝑏, (S5)

𝜓 = 0. (S6)
 

𝜃 and 𝑟 are the polar angle and radius in the polar coordinate system with the origin point located in the 

droplet center, respectively. 𝑘 represents the variation rate of the azimuth angle along the droplet's radius. 
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𝑏 represents the initial azimuth angle at the center of the droplet. Thus, the expression of the director field 

in the Cartesian coordinate system is expressed as  

𝑛𝑥 =
𝑥cos(𝑘√𝑥2 + 𝑦2 + 𝑏) − 𝑦sin(𝑘√𝑥2 + 𝑦2 + 𝑏)

√𝑥2 + 𝑦2
, (S7)

𝑛𝑦 =
𝑦cos(𝑘√𝑥2 + 𝑦2 + 𝑏) + 𝑥sin(𝑘√𝑥2 + 𝑦2 + 𝑏)

√𝑥2 + 𝑦2
, (S8)

𝑛𝑧 = 0. (S9)

 

Setting 𝑘 ≠ 0 in Eqs. (S7 − S9) enables the description of the splay deformation in the inner part of the 

CV-type structure observed experimentally. When 𝑘 =  0 and 𝑏 =  𝜋/2 in Eqs. (S7 − S9), the concentric 

polarization field at the periphery part is described (Fig. 1(n)). 

For The L-type structure, the model is also divided into two areas: the inner and the periphery parts. 

In the inner part, we set the azimuth and elevation angles as 

𝜑 = {
tan−1

−𝑥𝑦

𝐿2
              if 𝑦 > 0

tan−1
−𝑥𝑦

𝐿2
+ 𝜋      if 𝑦 < 0

, (S10)

𝜓 = 0. (S11)

 

𝐿 donates the inner radius of the L-type droplet, which is comparable with the length of the line disclination. 

The spatial distribution of the director in the inner part is written as 

𝑛𝑥 =
𝑦𝐿2

|𝑦|√𝐿4 + 𝑥2𝑦2
, (S12)

𝑛𝑦 =
−𝑥𝑦2

|𝑦|√𝐿4 + 𝑥2𝑦2
, (S13)

𝑛𝑧 = 0. (S14)

 

The concentric polarization field in the periphery part is consistent with that in the CV-type structure, 

described by Eqs. (S7 − S9), where 𝑘 = 0 and 𝑏 = 𝜋/2. 

Due to the dominant role of the dipolar interaction driving the polar nematic order in rod-shaped NF systems, 

our compounds undergo a direct Iso-NF transition without transitioning into apolar nematics as temperature 

decreases. In this scenario, the nematic order is induced by the polarization order. To explain this, we 

propose a linear coupling between the nematic order parameter and the polarization order as: 𝐍 = 𝑠𝐧 and 

𝐏 = 𝑃0𝐍 = 𝑃0𝑠𝐧 1. 𝑠 is the scalar order parameter for the uniaxial case. 𝑃0 is the maximum polarization 

intensity when a perfect order (i.e., 𝑠 = 1) is achieved. The polarization fields for CV- and L-type structures 

can be modeled as shown in Figs. 1(n,o). 

Part IV: Free-energy calculation for the CV-type structure 

In our model, the free energy density functional consists of a bulk term 𝑓b and a surface term 𝑓s. They 

are  
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𝑓bulk =
𝐾11(∇ ∙ 𝐍)2

2
+

𝐾22[𝐍 ∙ (∇ × 𝐍)]2

2
+

𝐾33[𝐍 × (∇ × 𝐍)]2

2

+
𝜏1𝐏

2

2
+

𝜏2𝐏
4

2
+

ℎ(∇𝐏)2

2
− 𝛾𝐍(∇ ∙ 𝐍) ∙ 𝐏 −

1

2
𝐏 ∙ 𝐄d, (S15)

𝑓surf =
1

2
𝑊Q[1 − (𝐧 ∙ 𝐧0)

2] − 𝑊P(𝐧 ∙ 𝐧0 − 1). (S16)

 

The first three terms in Eq. (S15) are the nematic elastic energy density for splay (𝐾11), twist (𝐾22), and 

bend (𝐾33) deformations. The fourth and fifth terms represent the Landau energy for realizing a polar phase. 

𝜏1 = 𝛼(𝑇 − 𝑇0) and 𝜏2 are the phenomenological coefficients. 𝑇0 is the critical temperature for the apolar-

polar phase transition. The equilibrium polarization of the system is 𝐏0 = 𝑠0𝑃0𝐧 , whose magnitude is 

determined by the Landau coefficients, i.e.,|𝐏0| = √−𝜏1/(2𝜏2). Note that we only consider the NF state in 

equilibrium (𝐏 = 𝐏0), so the Landau energy density here can be simplified as:  

𝑓Lau =
𝜏1(𝐏0)

2

2
+

𝜏2(𝐏0)
4

2

=
−𝜏1

2

8𝜏2
. (S17)

 

The sixth term is the polarization gradient energy density, in which  

𝛁𝐏 = 𝑃0𝛁(𝑠𝐧) = 𝑠𝑃0

(

 
 
 
 

𝜕𝑛𝑥

𝜕𝑥

𝜕𝑛𝑥

𝜕𝑦

𝜕𝑛𝑥

𝜕𝑧
𝜕𝑛𝑦

𝜕𝑥

𝜕𝑛𝑦

𝜕𝑦

𝜕𝑛𝑦

𝜕𝑧
𝜕𝑛𝑧

𝜕𝑥

𝜕𝑛𝑧

𝜕𝑦

𝜕𝑛𝑧

𝜕𝑧 )

 
 
 
 

. (S18) 

Here, we assumed that the order parameter is spatially homogeneous 𝑠 (𝛁𝑠 = 0). The polarization gradient 

term penalizes any deformation of the polarization field and effectively distinguishes between the 

ferroelectric and antiferroelectric states 1, 2. The seventh bulk term deals with flexoelectric polarization 

which comes from the LC flexoelectric effect. In the NF state, the flexoelectric polarization couples with 

the spontaneous polarization field, resulting in the effective splay elastic modulus 𝐾11 being reduced. 𝛾 is 

a bare flexoelectric coefficient. The last bulk term originates from the depolarization effect. 𝐄d is the 

depolarization field in the bulk of the NF droplet. Electrostatic interactions are particularly 

significant in the highly polar NF system at low temperatures. An example is the calculation of the 

depolarization energy in the core region of a CV-type structure. The polarization field in the NF 

droplet produces depolarization charges. The charge density can be calculated as: 

𝜌b = −𝛽(∇ ∙ 𝐏)

= 𝛽𝑃eff [𝑘sin(𝑏 + 𝑘𝑟) −
cos(𝑏 + 𝑘𝑟)

𝑟
] (S19)

 

𝑃eff  is regard as the effective polarization strength for the system, i.e., 𝑃eff = 𝑠𝑃0 . 𝛽  is a 

dimensionless coefficient. The actual amount of space charge would be (much) lower than the theoretical 

prediction due to the existence of free ions 3. 𝛽 is set to be of the order of 10−4 to calculate the actual 

space charge density in our NF droplets. By solving Poisson's equation (∇2Φ = −𝜌b/𝜀), we can further 

derive the depolarization potential Φ and electric field 𝐄, which are:  
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Φ = 𝐶1 + 𝐶2 ln 𝑟 +
𝛽𝑃effsin(𝑏 + 𝑘𝑟)

𝑘𝜀
(S20)

𝐄 = −∇Φ

=

(

 
 

−
𝑥[𝜀𝐶2 + 𝛽𝑃eff𝑟cos(𝑏 + 𝑘𝑟)]

𝜀𝑟2

−
𝑦[𝜀𝐶2 + 𝛽𝑃eff𝑟cos(𝑏 + 𝑘𝑟)]

𝜀𝑟2

0 )

 
 

(S21)

 

𝜀 is the effective dielectric constant of the LC material. 𝐶1 and 𝐶2 are the coefficients from the 

process of solving the equations. 𝐶1 represents an offset of the potential and 𝐶2 represents a background 

electric field. Correspondingly, the depolarization energy density for the core regions of a CV-type 

structure is 

𝑓depol =
1

2
𝑃effcos(𝑏 + 𝑘𝑟) [

𝐶2

𝑟
+

𝛽𝑃effcos(𝑏 + 𝑘𝑟)

𝜀
] . (S22) 

For generality, we include two types of anchoring effects from the surface-rubbed LC cells: traditional 

apolar anchoring and an additional polar anchoring (Eq. (S16)). The apolar anchoring prefers the director 

either syn-parallel or antiparallel to the rubbing direction. The polar anchoring, on the other hand, favours 

the polarization only syn-parallel to the rubbing direction. We set the polar anchoring direction to be 𝐧0 =

(1,0,0) here. The magnitude of the apolar and polar anchoring at the cells’ surface are controlled by 𝑊Q 

and 𝑊P, respectively. 

The total free energy of the CV-type structure is calculated by adding up the free energies arising from 

the inner and periphery parts. In the inner part, the free energy is calculated as 

𝐹c = ∫ ∫ (𝑓bulk + 𝑓surf)|𝑘≠0 ∙ 𝑟
𝑅1

𝑎

d𝑟
2𝜋

0

d𝜃

=
𝜋(�̅� + ℎ𝑃eff

2)

2
(𝑘2𝑅1

2 + 2ln
𝑅1

𝑎
) + 𝜋�̃�𝜒 −

𝜋𝜏1
2

8𝜏2
𝑅1

2

−2𝜋𝛾𝑃eff𝑅1cos(𝑏 + 𝑘𝑅1) +
𝜋

4
(𝑊Q + 2𝑊P)𝑅1

2 

+
𝜋𝛽𝑃eff

2

4𝑘2𝜀
[𝑘2𝑅1

2 + 𝑘𝑅1 sin(2𝑏 + 2𝑘𝑅1) − sin(𝑘𝑅1)sin(2𝑏 + 𝑘𝑅1)] (S23)

𝜒 = ∫
cos(𝑡 + 2𝑏)

𝑡

2𝑘𝑅1

2𝑘𝑎

d𝑡 −
𝑘𝑅1

2
sin(2𝑏 + 2𝑘𝑅1) −

3

2
sin(2𝑏 + 𝑘𝑅1)sin(𝑘𝑅1) (S24)

 

Note that Eqs. (S7 − S9)  fail to describe the polarization field at the center of the droplet due to 

√𝑥2 + 𝑦2 = 0, so we set the radius of this mathematical singularity to be 𝑎 to avoid divergence of the 

energy. 𝑅1 is the radius of the core region for the CV-type droplet. �̅� is defined as �̅� = (𝑠2𝐾11 + 𝑠4𝐾33)/2. 

The elastic anisotropy is represented by the second term of 𝐹CV , where �̃� = (𝑠2𝐾11 − 𝑠4𝐾33)/2 . In 

addition, we consider the polar anchoring effect very weak for the inner part of the droplets so that 𝑊P = 0 

in Eq. (S27). In the periphery part of CV-type droplets, an idealized concentric polarization field forms, 

whose free energy is calculated as 
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𝐹p = ∫ ∫ (𝑓b + 𝑓s)|𝑘=0,𝑏=
𝜋
2

∙ 𝑟
𝑅

𝑅1

d𝑟
2𝜋

0

d𝜃

= 𝜋(𝑠4𝐾33 + ℎ𝑃eff
2)ln

𝑅

𝑅1
−

𝜋𝜏1
2

8𝜏2
(𝑅2 − 𝑅1

2) +
𝜋

4
(𝑊Q + 2𝑊P)(𝑅2 − 𝑅1

2) (S25)

 

Therefore, the total free energy of a CV-type droplet reads 

𝐹CV =
𝜋

2
(�̅� + ℎ𝑃eff

2) (𝑘2𝑅1
2 + 2ln

𝑅

𝑎
) + 𝜋�̃� (𝜒 − ln

𝑅

𝑅1
) −

𝜋𝜏1
2

8𝜏2
𝑅2

−2𝜋𝛾𝑃eff𝑅1cos(𝑏 + 𝑘𝑅1) +
𝜋

4
𝑊Q𝑅2 +

𝜋

2
𝑊P(𝑅2 − 𝑅1

2)

+
𝜋𝛽𝑃eff

2

4𝑘2𝜀
[𝑘2𝑅1

2 + 𝑘𝑅1 sin(2𝑏 + 2𝑘𝑅1) − sin(𝑘𝑅1)sin(2𝑏 + 𝑘𝑅1)] (S26)

 

To simplify the above free energy form, we first try to determine the value of the parameter 𝑏, 

corresponding to the optimal azimuth angle of the polarization near the center of the CV-type structure. 

Considering the case of 𝑅1 ≈ 𝑎 → 0, the free energy of the CV-type structure is simplified as 

𝐹CVt ≈ 𝜋(�̅� + ℎ𝑃eff
2)ln

𝑅

𝑎
− 𝜋�̃� [2sin(2𝑏)𝑘𝑅1 + ln

𝑅

𝑅1
]

−2𝜋𝛾𝑃eff𝑅1 cos 𝑏 . (S27)
 

We used some approximation as: e.g., 𝑘2𝑅1
2~0, 𝑅2~0 and 𝑏 + 𝑘𝑅1~𝑏. The terms related to parameter 𝑏 

are elastic anisotropy and flexoelectricity, i.e.,  

𝑔(𝑏) = −2𝜋�̃�sin(2𝑏)𝑘𝑅1 − 2𝜋𝛾𝑃eff𝑅1 cos 𝑏 . (S28) 

When �̃� ≤ 0 , the free energy 𝐹CVt  minimizes when 𝑏 = 0 . If �̃� > 0 , the optimal parameter 𝑏0 

corresponding to the minimization of the function 𝑔(𝑏) can be derived by solving  

𝜕𝑔(𝑏)

𝜕𝑏
= −2𝜋𝑅1(2𝑘�̃� sin 2𝑏0 − 𝛾𝑃eff cos 𝑏0) = 0. (S29) 

Then, the optimal parameter 𝑏0 becomes 

𝑏0 = sin−1
√𝜍2 + 32 − 𝜍

8
. (S30) 

Here, 𝜍 is the radio of flexoelectricity and the elastic anisotropic, i.e., 𝜍 = 𝛾𝑃eff/𝑘�̃�. Worth noting 

that the values of 𝑏0 can go to zero when the flexoelectric effect is dominant (i.e., 𝛾𝑃0 ≫ �̃�). This situation 

may easily occur at the initial stage of the Iso-NF transition. Based on the above discussion and for 

convenience, we will consider 𝑏 = 0 in the following calculation. We then applied this condition to Eq. 

(S26).  

To investigate the optimal CV-type structure, we calculated the equilibrium inner radius 𝑅e1 for the 

CV-type droplet. We first calculate the first-order partial derivatives of 𝐹CV with respect to 𝑅1, which gives 

an equation for 𝑅e1: 

𝜕𝐹CV

𝜕𝑅1
= 0 ⇒

�̃�[1 + cos 2𝜙0 − 2𝑘𝑅e1 sin 2𝜙0 − (𝑘𝑅e1)
2 cos2𝜙0] +

𝛽𝑃eff
2

𝜀
𝑅e1

2 cos2 𝜙0

= 2𝛾𝑃eff𝑅e1(cos𝜙0 − 𝑘𝑅e1 sin𝜙0) − [𝑘2(�̅� + ℎ𝑃eff
2) − 𝑊P]𝑅e1

2. (S31)
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𝜙0 is set to be 𝜙0 = 𝑏 + 𝑘𝑅e1, which represents the azimuth angle of the polarization on the boundary of 

the core area. The range of values of 𝜙0 is (0, 𝜋/2). The trigonometric terms in Eq. (S35) can therefore be 

handled by course-grained method for simplification, e.g., 〈cos 2𝜙0〉 = 0, 〈sin 2𝜙0〉 = 1, 〈cos2 𝜙0〉 = 1/2 

and 〈cos𝜙0〉 = 〈sin𝜙0〉 = 2/𝜋. So, we obtained the solution for the equilibrium inner radius 𝑅e1 as 

𝑅e1 ≈
4𝜂 + √16𝜂2 − 2𝜋�̃�𝜁

𝜁
, (S32)

𝜁 = 2𝜋𝑘2(�̅� + ℎ𝑃eff
2) + 8𝑘𝛾𝑃0 + 𝜋

𝛽𝑃eff
2

𝜖
− 𝜋𝑊P, (S33)

𝜂 = 𝛾𝑃eff + 𝑘�̃�. (S34)

 

We briefly discuss how the elastic anisotropy affects the equilibrium CV-type structure based on Eqs. 

(S32 − S34). Taking the first-order partial derivatives of 𝑅e1 with respect to �̃�, we obtained 

𝜕𝑅e1

𝜕�̃�
=

2[3(2𝑘𝑅e1 − 𝜋) + 8𝑘(1 − 𝑘𝜂)]

𝜁√16𝜂2 − 2𝜋�̃�𝜁
. (S35) 

Since 𝑘𝑅e1  ranges in value from (0, 𝜋/2) as discussed earlier and 𝑘𝜂 < 1  is known after substituting 

numerical values (e.g., 𝑘 = 𝜋/10 μm-1, 𝛾 = 10−4 V, 𝑃eff = 4.5 μC·cm-2), 𝑅e1 decreases as �̃� increases. 

Physically, different ferroelectric LCs may exhibit either positive 4 or negative 5 values of �̃�. If �̃� < 0, the 

effective splay elastic modulus is smaller than the effective bend elastic modulus 𝐾33, suggesting that the 

elastic anisotropy favors expanding the inner radius of the CV-type structure. If �̃� > 0, the effective splay 

modulus 𝐾11 is larger than the effective bend modulus 𝐾33, implying that the elastic anisotropy suppresses 

the expansion of the inner areas in the CV-type structure. A similar scenario that the condition of  

𝐾33/(8𝐾11) + 𝐾22/𝐾11 ≤ 1 in apolar N droplets leads to the called twisted radial structure (an apolar 

analogy of the vortex-like topology) under the homeotropic anchoring. This is because the radial 

configuration is unstable against a twist deformation as 𝐾33  decreases. In the NF droplets, the elastic 

anisotropy does not affect the essence of the formation of polarization topology (Fig. 2), so we further 

simplify the equilibrium inner radius under the single-elastic-constant approximation as: 

𝑅e1 ≈
8𝛾𝑃eff

2𝜋𝑘2(�̅� + ℎ𝑃eff
2) + 8𝑘𝛾𝑃eff +

𝜋𝛽𝑃eff
2

𝜀 − 𝜋𝑊P

. (S36)
 

Correspondingly, the free energy of an CV-type droplet with an equilibrium inner diameter 𝑅e1 is  

𝐹CVe ≈ 𝜋(�̅� + ℎ𝑃eff
2) [

𝑘2𝑅e1
2

2
+ ln

𝑅

𝑎
] −

𝜋𝜏1
2

8𝜏2
𝑅2 − 2𝜋𝛾𝑃eff𝑅e1cos(𝑘𝑅e1)

+
𝜋

4
𝑊Q𝑅2 +

𝜋

2
𝑊P(𝑅2 − 𝑅e1

2) +
𝜋𝛽𝑃eff

2

4𝑘2𝜀
[𝑘2𝑅e1

2 +

𝑘𝑅e1 sin(2𝑏 + 2𝑘𝑅e1) − sin(𝑘𝑅e1)sin(2𝑏 + 𝑘𝑅e1)] (S37)

 

Using Eq. (S31), we can further simplify Eq. (S37) as 

𝐹CVe ≈ 𝜋(�̅� + ℎ𝑃eff
2)ln

𝑅

𝑎
−

𝜋𝜏1
2

8𝜏2
𝑅2 +

𝛽𝑃eff
2

4𝜀
𝑅e1 +

𝜋

4
(𝑊Q + 2𝑊P)𝑅2 (S38) 
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Part V: Free-energy calculation for the L-type structure 

The total free energy of an L-type droplet is calculated by adding up three parts. First, the polarization 

field in its core area can be described by Eq. (S12 − S14), and this region is considered a circular shape 

with a radius of 𝐿. According to Eq. (S15 − S16), the corresponding free energy density is calculated as:  

𝑓ela =
𝑠2𝐾11

2𝐿2
∙
𝑥′2(1 + 𝑦′2)

2

(1 + 𝑥′2𝑦′2)
3 +

𝑠4𝐾33

2𝐿2
∙
𝑦′2(1 − 𝑥′2)

2

(1 + 𝑥′2𝑦′2)
3

(S39)

𝑓Lau =
−𝜏1

2

8𝜏2
(S40)

𝑓grad =
ℎ𝑃eff

2

2𝐿2
∙

𝑥′2 + 𝑦′2

(1 + 𝑥′2𝑦′2)
3 (S41)

𝑓flexo =
𝛾𝑃eff

𝐿
∙

𝑥′(1 + 𝑦′2)

(1 + 𝑥′2𝑦′2)
3
2

(S42)

𝑓surf =
𝑊Q

2
∙

𝑥′2𝑦′2

1 + 𝑥′2𝑦′2
(S43)

 

We define 𝑥′ = 𝑥/𝐿 and 𝑦′ = 𝑦/𝐿, and they take values in the range of [−1,1]. The depolarization charges 

induced by the L-type structure is calculated as: 

𝜌b = −𝛽(∇ ∙ 𝐏)

=
𝛽𝑃eff

𝐿
∙

𝑥′(1 + 𝑦′2)

(1 + 𝑥′2𝑦′2)
3
2

(S44) 

After substituting Eq. (S44)  into Poisson’s equation, a non-homogeneous second-order differential 

equation is obtained. Because it is difficult to obtain analytical solutions, we conducted numerical 

calculations. Firstly, we numerically solve the equation of  

∇2Φ1 = −
𝑥′(1 + 𝑦′2)

(1 + 𝑥′2𝑦′2)
3
2

(S45) 

in a grid space of size [𝑥′, 𝑦′] ∈ [−1,1] with a step length of 0.01 μm. A solution of Φ1 with numerical-

matrix type was obtained. Then, we numerically solve the corresponding depolarization field through the 

equation of 𝐄1 = −∇Φ1. We considered a L-type structure (𝐏′ = (𝑃′
𝑥′ , 𝑃′

𝑦′ , 𝑃′𝑧′)) as 

𝑃′𝑥′ =
𝑃eff𝑦′

|𝑦′|√1 + 𝑥′2𝑦′2
, (S46)

𝑃′𝑦′ =
−𝑃eff𝑥′𝑦′2

|𝑦′|√1 + 𝑥′2𝑦′2
, (S47)

𝑃′𝑧′ = 0. (S48)

 

So, the depolarization energy density in the grid space can be calculated by the equation of  
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𝑓′depol = −
1

2
𝐏′ ∙ 𝐄1 (S49) 

𝑓′depol  is a numerical matrix. We denote the average value of 𝑓′depol  as 𝑁1 , and then the actual 

depolarization energy density of an L-type structure with a radius of 𝐿 can be estimated as  

𝑓depol =
𝛽𝑃eff

𝐿
𝑓′

depol
≈ 𝑁1

𝛽𝑃eff

𝐿
(S50) 

Finally, we perform a numerical integration in the region of 𝑥′2 + 𝑦′2 < 1 to obtain the free energy of the 

inner part of an L-type droplet, the results are  

𝐹𝐿 = 𝐿2 ∫ ∫ (𝑓bulk + 𝑓surf)

√1−𝑥′2

−√1−𝑥′2
d𝑦′

1

−1

d𝑥′

≈ 0.45𝑠2𝐾11 + 0.25𝑠4𝐾33 −
𝜋𝜏1

2

8𝜏2
𝐿2 + 0.70ℎ𝑃eff

2 + 𝑁1

𝜋𝛽𝑃eff
2

𝜀
𝐿 + 0.06𝑊Q𝐿2. (S51)

 

The second part of the total free energy is caused by the line disclination in L-type droplets, whose energy 

is controlled by the nematic elasticity and length, i.e., 

𝐹d = 𝜅�̅�𝐿. (S52) 

𝜅 is a constant related to the tension of the line disclination in nematic. The last part of the total free energy 

is caused by the elastic energy arising from the concentric structure formed in the peripheral area, which is 

solved as 

𝐹p = ∫ ∫ (𝑓b + 𝑓s)|𝑘=0,𝑏=
𝜋
2

∙ 𝑟
𝑅

𝐿

d𝑟
2𝜋

0

d𝜃,

= 𝜋(𝑠4𝐾33 + ℎ𝑃0
2)ln

𝑅

𝐿
−

𝜋𝜏1
2

8𝜏2

(𝑅2 − 𝐿2)

+
𝜋(𝑊Q + 4𝑊P)

4
(𝑅2 − 𝐿2). (S53)

 

Therefore, the total free energy of an L-type droplet reads: 

𝐹L = 0.45𝑠2𝐾11 + 𝑠4𝐾33 (0.25 + 𝜋ln
𝑅

𝐿
) −

𝜋𝜏1
2

8𝜏2
𝑅2 + 𝜅�̅�𝐿 + 𝑁1

𝜋𝛽𝑃eff
2

𝜀
𝐿

+ℎ𝑃eff
2 (0.70 + 𝜋ln

𝑅

𝐿
) + 𝜋𝑊P(𝑅2 − 𝐿2) +

𝜋

4
𝑊Q(𝑅2 − 0.92𝐿2). (S54)

 

Numerically calculating 𝐹L  as a function of 𝐿  under the cases of the single-elastic-constant 

approximation and the three-elastic-constant condition are shown in Fig. 3. The landscapes of the free 

energy in both cases are similar. For simplicity of the analytical solution, we consider the single-elastic-

constant approximation and obtain 
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𝐹L = (�̅� + ℎ𝑃eff
2) (0.70 + 𝜋ln

𝑅

𝐿
) −

𝜋𝜏1
2

8𝜏2
𝑅2 + 𝜅�̅�𝐿

+𝑁1

𝜋𝛽𝑃eff
2

𝜀
𝐿 +

𝜋

2
𝑊P(𝑅2 − 𝐿2) +

𝜋

4
𝑊Q(𝑅2 − 0.92𝐿2). (S55)

 

We took the first-order partial derivatives of 𝐹L with respect to 𝐿, which optimize of the length of the line 

disclination 𝐿e as 

𝜕𝐹L

𝜕𝐿
= 0 ⇒

𝜋 (0.23𝑊Q +
𝑊P

2
)𝐿e

2 =
𝐿e

2
(𝜅�̅� + 𝑁1

𝜋𝛽𝑃eff
2

𝜀
) −

𝜋

2
(�̅� + ℎ𝑃eff

2), (S56)

 

𝐿e =
𝜚 − √𝜚2 − 2𝜋𝑊(�̅� + ℎ𝑃eff

2)

𝑊
. (S57)

𝜚 = 𝜅�̅� + 𝑁1

𝜋𝛽𝑃eff
2

𝜀
(S58)

 

The total anchoring strength is represented by 𝑊 = 4𝜋(0.23𝑊Q + 𝑊P) , which has to meet 𝑊 <

𝜚2/2𝜋(�̅� + ℎ𝑃0
2). The stronger anchoring out of the range leads the polarization to orient parallel to the 

rubbing direction, destabilizing the L-type structure. Under this constraint, we took first-order partial 

derivatives of 𝐿e with respect to 𝑊, which can deduce that 

𝜕𝐿e

𝜕𝑊
=

𝜋(�̅� + ℎ𝑃eff
2)

𝑊√𝜚2 − 2𝜋𝑊(�̅� + ℎ𝑃eff
2)

−
𝜚 − √𝜚2 − 2𝜋𝑊(�̅� + ℎ𝑃eff

2)

𝑊2

≥
1

𝑊
(√

2𝜚2

𝑊2
−

𝜚

𝑊
) > 0. (S59)

 

Therefore, we conclude that 𝐿e increases with increasing the anchoring strength. Finally, we insert Eq. (56) 

into Eq. (55) to obtain the free energy of an L-type droplet with the equilibrium defect length 𝐿e, which 

reads: 

𝐹Le = (�̅� + ℎ𝑃eff
2) (2.27 + 𝜋ln

𝑅

𝐿e
) −

𝜋𝜏1
2

8𝜏2
𝑅2 + 𝜅�̅�

𝐿e

2

+
𝜋

4
(𝑊Q + 2𝑊P)𝑅2. (S60)

 

Part VI: Free-energy comparison between the CV- and L-type structures 

Comparing Eqs. (S38) and (S60), we can calculate the difference in the free energy for the optimized CV-

type and L-type droplets with a certain size, i.e., 
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∆𝐹 = 𝐹Le − 𝐹CVe

= (�̅� + ℎ𝑃eff
2) (2.27 − 𝜋ln

𝐿e

𝑎
) +

𝐿e

2
(𝜅�̅� −

𝛽𝑃eff
2

2𝑁𝜀
) . (S61)

 

𝑁 is defined as the radio of 𝐿e and 𝑅e1, i.e., 𝑁 = 𝐿e/𝑅e1. The condition for the spontaneous transition from 

the CV- to the L- structure is ∆𝐹 < 0. So next, we calculate the critical value 𝐿e0 for ∆𝐹 = 0. The equation 

for 𝐿e0 is 

(�̅� + ℎ𝑃eff
2)

𝑎
=

(𝜅�̅� −
𝛽𝑃eff

2

2𝑁𝜀 )
𝐿e0
𝑎

2 (𝜋ln
𝐿e0
𝑎 − 2.27)

≈

(𝜅�̅� −
𝛽𝑃eff

2

2𝑁𝜀 )𝑎

2𝜋𝐿e0

(S62) 

Note that the above equation is valid only when 𝐿e0/𝑎 is large. Thus, the critical size of 𝐿e for ∆𝐹 = 0 is 

𝐿e0 ≈
𝑎2

2𝜋(𝐾 + ℎ𝑃eff
2)

(𝜅𝐾 −
𝛽𝑃eff

2

2𝑁𝜀
) . (S63) 

Furthermore, we discussed earlier that 𝐿e would increase with the increase of the effective polarization 𝑃eff, 

so there would be a corresponding critical value for 𝑃eff to realize ∆𝐹 < 0. Combining Eqs. (S60) and 

(S66), we obtain 

(1 + ℎ𝜆2) ≈
𝑎2(𝜅 − 𝛽/2𝑁𝜖)2

4𝜋2
[1 −

2𝑎2𝑊

𝜋(𝐾 + ℎ𝑃eff
2)

] (S64) 

𝜆 is a scaled parameter between the polarization strength and the elasticity modulus, i.e., 𝜆 = 𝑃eff
2/𝐾. 

Because 𝑎 is very small, we obtain the critical 𝜆 that makes ∆𝐹 = 0 as 

𝜆H =
𝑎2(𝜅 − 𝛽/2𝑁𝜖)2 − 4𝜋2

4ℎ𝜋2
. (S65) 

Finally, let us briefly explain the magnitude of each physical quantity used in our numerical 

calculations. As claimed earlier, �̅� and �̃� are additive and subtractive coupling terms for the nematic elastic 

modulus, and their magnitudes are ~10−12 N 6. The coefficient ℎ for the polarization gradient term is in 

the order of ~10−10 J·m3·C-2, which was used in our previous work 7. 𝜏1 and 𝜏2 are phenomenological 

coefficients in the Landau energy terms. They are set to be −103  J·m·C-2 and 9.88 × 105  J·m5·C-4 

respectively so that the equilibrium polarization strength is 4.5 μC·cm-2. The value of 𝛾 is 10−4 V, which 

is reported in a recent work 8. 𝛽 is set to be of the order of 10−4 as mentioned before 3. Under this condition, 

the amount of space charge accumulated per unit volume is estimated as 𝛽 ∫∇ ∙ 𝐏  𝑑𝑉unit ≈ 10−17 C when 

𝑃0 = 6 μC·cm-2, which is comparable to the reported value in ref. 3. The effective dielectric constant 𝜀 for 

the NF LCs is very large 9, so we set it in the order of ~10−7 F·m-1(The vacuum dielectric constant is 

8.85 × 10−12F·m-1). The magnitude of the surface anchoring factor 𝑊Q and 𝑊P is set to be ~10−6 J·m-2 

10.  
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