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Supplementary Information for

Computational Mesoscale Framework for Biological
Clustering and Fractal Aggregation

S1 Supplementary Equations

The thermal fluctuation is included in the model by

dv;
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where W;; is a matrix of independent increments of a Wiener pro-
cess for each pair i, j of particles, and W;; is its traceless symmetric
part, given by
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where D is the dimensionality of the system. To satisfy the

fluctuation-dissipation balance the amplitude of the thermal noises
A;j and B;; are related to the friction coefficients a and b through
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To describe the variation of the pressure with the density of the
system we adopt the Cole equation (a.k.a. Tait’s equation of state)
given by p; = ¢?po/7 [(pi/po)” — 1] + pp (S4) where c is the speed
of sound on the fluid, and py is the reference density. The term
¢%po/7 corresponds to the reference pressure of the system, given
by ¢ =adp/ dp|p=p,- The parameter pj, is a background pressure,
that provides numerical stability by keeping the pressure of the
system always positive.

For the interpolant function, we adopt the Lucy kernell typ-
ically used in SDPD
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where wg = 5/m or wy = 105/167 for two or three dimensions, re-
spectively. For a comprehensive description of the SDPD method,
the reader is referred to.2

S2 MSD calculation

The time-averaged MSD is calculated from the trajectory of moving
(S) particles in the range t =0,...,T.

38 = g [ 8 roPa (s6)

where A is the so-called lag time, which defines the size of a win-
dow slid along the trajectory r(t). The trajectory length T is also re-
ferred to as measurement time. Besides the individual time traces
(8%(A)) we also considered the average over N individual trajecto-
ries:
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In normal diffusion, ((§?(A))) ~ Dt, where the diffusion coeffi-
cient D is constant. In pure anomalous subdiffusion, ((§2(A))) ~
t% a <1 at all times, where « is the anomalous diffusion ex-
ponent. The diffusion coefficient is, therefore, time-dependent,
D(r) ~ 1/t'=%, appropriately modified to give the proper limit at
t =0, say D(t) = Dg/(1+t'~%). The case of interest here is tran-
sient anomalous subdiffusion, in which there is a crossover from
anomalous subdiffusion at short times to normal diffusion at long
times,

t% fort < t,
(82(A))) ~ { o < fere (S8)
t fort > tcpa
where tcg, is the crossover time.
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Fig. S1 Behavior of MSD in the complex clusters
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Fig. S2 The complete set of mechanisms (a)—(g) paths
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Fig. S3 Final cluster morphology and dy are shown for six alternative
mechanisms (a,b,c,d,e, ) and @i = 30%
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Fig. 'S4 Final cluster morphology and dy are shown for six alternative
mechanisms (a,b,c,d, e, f) and @i,y = 50%
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Fig. S5 Final cluster morphology and 7 are shown for six alternative con-
centrations @, = 20%,30%,40%,50%,60% and mechanism ¢ (B(3) _B(0))
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§3.1 Effect of first-stage bonding number (n) on cluster mor-
phology

We explore the morphology of clusters for three distinct mech-
anisms where the second-stage bonding or consolidation stage
is off (m = 0), in order to examine the effect of the first-stage
bond number. We do this by altering n bonds number cre-
ated at the initial stage of bonding for n = 2,3,10 (mechanisms:
B(2) _B(0),B(3)_B(0),B(10)_B(0)) and three different concentra-
tions of ¢, = 30%,40%,50% as shown in Fig. We define the
parameter Np/N, (the average number of bonds formed between
(A) particles) as a biomarker for studying the cluster morphology.
One might observe that Ng/N4 does not exceed 1 for all mecha-
nisms and there is no difference between the structure of clusters
for n > 2. However, because there are only two allowed bonds
in the mechanism B(2)_B(0), the cluster morphology resembles a
chain, and the activation time for every (P) particle is quite long,
especially for lower concentration values. There are still (P) par-
ticles in the system at all three concentrations of this mechanism
as depicted in Fig. It is possible to deduce that the character-
ization of a cluster is unaffected by the number of bonds in the
first-stage bonding for n > 2. However, regardless of how large n
is, Ng/N, is equal to 1.
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Fig. S6 Effect of the first-stage bond numbers on cluster morphol-
ogy for various mechanisms: B(2) B(0),B(3) B(0),B(10) B(0) and ¢y =
30%,40%,50%. The average number of bonds formed between (A) parti-
cles (Ng/N,) are shown.

§3.2 Effect of second-stage bonding number () on cluster
morphology
To investigate the effect of the second-stage bond number, the first-
stage bonding number, n is fixed to 3, and the bond number in the
second stage, m is adjusted to m = 0,2, and 10, equal to mechanism
types ¢, d and e (B(3)_B(0), B(3)_B(2) and B(3)_B(10)). In Fig.
the cluster morphologies of these three mechanisms and different
concentrations ¢;,; = 30%,40%,50% are shown. When there is no



bond in the second stage (m = 0), the average number of bonds
formed between (A) particles, Ng/N4 = 1 whereas for m =2 and
m = 10, the cluster morphology becomes more branched, solid and
stable with Ng/N4 > 1, resulting the lower value of dy. It implies
that we can only imitate mature clots using second-stage bond-
ing. However, it appears that the second-stage bond number has
altered not only the fractality of the cluster but also the cluster ki-
netic characteristics, as evaluated by MSD measurement (outlined
in this study as a new biomarker).
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Fig. S7 Effect of the second-stage bond numbers on cluster morphology
for various mechanisms of (c,d,e) and @i = 30%,40%,50%. The average
number of bonds formed between (A) particles (Ng/N,) are shown.

S$3.3 Effect of delay time between first-stage bonding and ag-
gregation on the cluster morphology and 7;

This section’s primary goal is to examine the impact of the de-
lay time between the aggregation process and the first-stage bond-
ing on the cluster morphology and 7;. We consider mechanism g
(B(3)A_B(0)) and ¢;,; = 40% to see this effect. The delay time is
Tdelay = 0.006 that is dimensionless with 7;;¢s. In this manner, we
apply initiation bonding for every 7,4, duration of aggregation.
The results in Fig. [S8c show that by delaying the time between
bonding and aggregation, 7; increases in comparison to the case
Tgelay = 0 (seen in Fig. b) also dy and final cluster morphol-
ogy profoundly changes. We also infer that adding aggregation to
mechanism ¢ (B(3)_B(0)) without delay time (seen in Fig.[S§| 4, b)
has little effect on dy and 7. In Fig. which depicts cluster evo-
lution with time for 7 = 0.006, can observe how the droplet form
of (P) particles (because of aggregation) makes the first-bonding
stage slower. Delay time, replicates the activation delay time for
platelets during the clot-forming process.
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Fig. S8 Effect of delay time between first-stage bonding and aggrega-
tion on cluster structure. The final morphology, df and 7; are displayed
for ¢y =40% and for a)mechanism ¢, b) mechanism g, and 74y =0,
c) mechanism g, and T4y = 0.006 to see how the delay time between
aggregation and activation change cluster morphology.
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Fig. S9 Cluster evolution with time for mechanism g and 74,4y = 0.006
of first-stage bonding and aggregation. The activation of passive particles
can also be seen in the step-by-step morphology of this mechanism.

0.0 0.2 0.4 0.6 0.8 1.0
t/tG,

Fig. S10 Dimensionless bonds number Np evolution with time for various
mechanisms of ¢,d,e, f and ¢;,; =40%. Each curve is dimensionless with
its values in a steady state or gelling state, and time is also dimensionless
with 75 of mechanism f. The final morphology for each mechanism is
displayed.
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Fig. S11 A biomarker diagram is provided step by step regarding the implementation of different mechanisms in our model for ¢;,, = 30%. Biomarkers
include df, D, o, 7 and 7.

Bonding

Fig. S12 A biomarker diagram is provided step by step regarding the implementation of different mechanisms in our model for ¢, = 50%. Biomarkers
include dy, D, a, % and 7.
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S4  Supplementary Tables Notes and references

1 P. Espanol and M. Revenga, Physical Review E, 2003, 67,
Table S1 Input parameters of the SDPD method 026705.

2 M. Ellero and P. Espafiol, Applied Mathematics and Mechanics,

Domain size [Ly x Ly] (40dx) % (40dx)
Total number of particles (V) 1600 2018, 39, 103-124.
Mass(m) 0.04
viscosity(n) 10

kpT 0.1
Density(pg) 1

Pressure(pg) 50

Speed of sound (cs) 40

Time step (dt) 10~4

Initial lattice spacing(dx) 0.2

Cutoff radius (h) 4dx

Table S2 Input parameters of the bond and surface tension potentials

Bond Stiffness Parame- Bond Length, ry Surface Tension,
Strength, ter, a (Eq. 6) (Eq. 6) o (Eq. 5)

DMor.ve (Eq 6)

30 1 0.2 0.5

Table S3 dy values (with the standard deviation equal to £0.01) for dif-
ferent, ¢;,; and six different mechanisms

Mechanisms Concentrations

Pine = 30% Pine = 40% Pine = 50%
a dr=1.84 dr =192 dr =198
b dy =1.81 dr =1.90 dr =1.96
C df:1.65 df:1.77 df=1.87
d dr =148 dr =171 dr=1.82
e d_f:1.43 deI.S6 del.75
f dr =143 dy =1.56 dr=1.75
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