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1 Transformation to frequency domain

The relationship between the MSD of a microsphere in a viscoelastic medium and the shear creep

compliance, J(t), of said fluid is given through a simple linear relation:

〈
∆r2 (τ)

〉
=

dkBT
3πa

J(t) , (S1)

where kB denotes the Boltzmann’s constant, T is the absolute temperature, d the dimensionality

and a is the radius of the tracer particle. In principle, the transformation from the creep com-

pliance, J(t), which exists in the time domain,to the frequency-dependent viscoelastic moduli,

G′(ω) and G′′(ω), requires a rigorous conversion through a Fourier transformation.1 To limit

artifacts in the transformed data through the direct transformation in discrete time steps, an ap-

proximate method proposed by Mason2 was used. This is based on a power law description of

the change of the local MSD at any given time point. The power law behavior comes from the

logarithmic derivative of the MSD α(ω), which is in the range of 0 − 1, where 0 and 1 would
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correspond to a particle in a purely elastic and a purely viscous medium, respectively:

α(ω) =
∂ln

〈
∆r2( 1

ω )
〉

∂ln 1
ω

. (S2)

From that point the magnitude of the complex modulus G∗(ω) can be estimated to be:

|G∗(ω)| = kBT
πa

〈
∆r2( 1

ω )
〉

Γ[1 + α(ω)]
, (S3)

where Γ represents the Gamma function which can be estimated to be Γ[1+ α] ≈ 0.457(1+ α)2 −

1.36(1 + α) + 1.90. A detailed analysis is presented in Desgupta et al.3 where the idea of Mason2

is expanded up to 2nd order. The frequency dependent elastic and storage moduli, G′(ω) and

G′′(ω), can than be obtained from:

G′(ω) = |G∗(ω)| cos(πα(ω)/2) ,

G′′(ω) = |G∗(ω)| sin(πα(ω)/2) .
(S4)

Frequency-domain representation enables a more clear view of the different relaxation times,

and Fig. S 1A-B show the apparent viscoelastic moduli, calculated from the MSD, of course sub-

ject to the limitations presented in section 2.6. The resulting values of the moduli are in agree-

ment with those measured in other cell types.4, 5, 6, 7 The magnitude and frequency dependency

of the storage (G′) and loss (G′′) moduli reflect the same information as the time dependence

of the creep compliance (Fig. 5). The magnitude of G′ increases upon stimulation with glucose,

which can be associated with an increase of intracellular stiffness, similar to the decrease in J(t).

The crossover-point indicates at which frequency the response transitions from a more fluid-like

character to a more solid-like character, it shifts to lower frequencies upon stimulation of the

healthy cells, consistent with a stiffening and slowing down of the network. The relaxation time,

calculated as the inverse of the crossover frequency, corresponds to 0.8 s and 7 s for the fasting

and stimulated state, respectively. In contrast, the relaxation time is substantially larger for the

PA-treated cells, corresponding to 60 s for the stimulated cells, while not being observable, in

the measured frequency range, for the fasting ones. The observed increase in relaxation time

2



for the PA-treated case suggests that the control fidelity through cytoskeleton remodeling is de-

ficient compared to the control. No clear plateau is observed in any condition at the measured

frequency range, with the healthy starving condition showing the least pronounced one.
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Figure S 1: Frequency-domain representation: Storage modulus (G′, solid symbols) and loss

modulus (G′′, open symbols) as a function of frequency for (A) control and (B) PA-exposed cells.

Square and circle symbols correspond to fasting and glucose-stimulated conditions, respectively.

2 Ergodicity breaking and noise-terms

The autocorrelation function of all the evaluated conditions show a slight negative correlation

between two following frames, indicating some elasticity in the probed system (Fig. S 2A). The

histograms of Fig. S 2B-C show the velocity distribution of the evaluated conditions. Seemingly,

the excess curtosis does not change drastically between the different cases, further supporting the

claim that the condition can be evaluated and compared to each other and professedly without

having a considerably different non-thermal noise contribution between the analyzed conditions.
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Figure S 2: (A) Normalized autocorrelation function of individual tracks for different cases.

Velocity histograms for control (B) and PA-treated (C) cells for both fasting and stimulated con-

ditions, normalized by the total count of steps.
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