
Geometric Learning of Knot Topology: Supplementary Information

Joseph Lahoud Sleiman,1, ∗ Filippo Conforto,1, ∗ Yair Gutierrez Fosado,1 and Davide Michieletto1, 2, †

1School of Physics and Astronomy, University of Edinburgh,
Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK

2MRC Human Genetics Unit, Institute of Genetics and Cancer,
University of Edinburgh, Edinburgh EH4 2XU, UK

SIMULATION DETAILS

We model knotted curves as semi-flexible coarse-
grained bead-spring polymers with N = 100 (unless oth-
erwise stated) beads of size σ. The beads interact with
each other via a purely repulsive Lennard-Jones poten-
tial,

ULJ(r) =

 4ϵ

[(σ
r

)12

−
(σ
r

)6

+
1

4

]
r ≤ rc

0 r > rc

, (1)

where r denotes the separation between the beads and
the cut-off rc = 21/6σ is chosen so that only the re-
pulsive part of the potential is used. Nearest-neighbour
monomers along the contour of the chains are connected
by finitely extensible nonlinear elastic (FENE) springs
as,

UFENE(r) =

{
−0.5kR2

0 ln
(
1− (r/R0)

2
)

r ≤ R0

∞ r > R0
,

(2)
where k = 30ϵ/σ2 is the spring constant and R0 = 1.5σ is
the maximum extension of the elastic FENE bond. This
choice of potentials and parameters is essential to pre-
clude thermally-driven strand crossings and therefore en-
sures that the global topology is preserved at all times [1].
Finally, we add bending rigidity via a Kratky-Porod po-
tential, Ubend(θ) = kθ

(
1− cos θ

)
, where θ is the angle

formed between consecutive bonds and kθ = 10kBT is
the bending constant, thus yielding a persistence length
lp = 10σ (different values of lp are considered below).
Each bead’s motion is then evolved via the Langevin
equation

m
dvi
dt

= −γvi −∇U +
√
2kBTγη (3)

along each Cartesian component. Here, γ is the friction
coefficient, m the mass of the bead, U the sum of the
potentials acting on bead i and

√
2kBTγη a noise term

that obeys the fluctuation-dissipation theorem. The nu-
merical evolution of the Langevin equation is done with a
velocity-Verlet scheme with dt = 0.01τLJ = 0.01σ

√
m/ϵ

in LAMMPS [2]. In order to initialise the knotted chains,
we use the ideal spatial representation used by KnotPlot
and smoothly deform the contour to introduce LJ and
FENE interactions before any strand-crossing occurs.

Sampling

To ensure that the conformations are uncorrelated and
suitable for training our model, we evaluated the interval
between samples via the auto-correlation time, τ0. This
characteristic time was calculated using the autocorrela-
tion of the radius of gyration against time, τ i.e.

G(τ) =

∑
t(Rg(t)− ⟨Rg⟩)(Rg(t+ τ)− ⟨Rg⟩)∑

t(Rg(t)− ⟨Rg⟩)2
(4)

where ⟨Rg⟩ is the mean radius of gyration and Rg(t)
is the radius of gyration at time t. We then fitted an
exponential decay with characteristic time τ0 to mea-
sure the auto-correlation time. For a 100-bead knot,
τ0 ≃ 14 103 LAMMPS steps (not shown), and we thus
collected 105 conformations every 105 steps, ensuring un-
correlated samples.

DATA PREPROCESSING

Feature Engineering

To train the NN, we label the polymer conformations
with their topology, independently verified using Kymo-
knot [3, 4]. We also process the raw LAMMPS output
to obtain geometric representations that are fed as in-
put into the NNs. More specifically, we here consider 6
representations, defined as follows:

• Cartesian (XYZ) coordinates: we consider the
3D coordinates of each monomer along the chain,
and to ensure that the absolute position of the poly-
mer in space does not affect the model, we shift the
polymer’s centre of mass (CoM) to the origin.

• Adjacent monomer distances: we calculate the
Euclidean distance between beads as di = ri+1−ri
and normalise the obtained values between [−1 : 1].

• Local polymer curvature: we calculate the local
curvature along the polymer as

Γ(i) =
1

n

i+n/2∑
j=i−n/2

arccos

(
tj−1,j · tj,j+1

|tj−1,j ||tj,j+1|

)
(5)

where tj,j+1 ≡ rj+1 − rj is the tangent vector at
bead j and n = 20 an averaging window.

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2023

2

• Local bead density: we calculate the local cur-
vature as

∆(i) =
1

NVR

N∑
j ̸=i

Θ(R− |ri − rj |) (6)

where Θ(x) = 1 if x > 0 and 0 otherwise. In this
equation, VR = 4πR3/3 is the volume of a sphere
of radius R, and we take R = 3σ, in simulation
units. The results obtained are broadly unchanged
as long as this threshold is larger than the bead size
but smaller than the entire polymer knot.

• Local or 1D (unsigned) writhe: we numerically
compute the local crossing number using a general-
isation of the better known global average crossing
number [5], which we can write as [6]

ω1D(i) =
2

4π

i∑
k=i−lw

i+lw∑
l=i

|(tk,k+1 × tl,l+1) · (rk − rl)|
|rk − rl|3

(7)
where lw = 10 is the window length over which the
calculation is performed. In this equation, local
self-crossings are the major contributing factors. A
straight, non-self-crossing segment centred at bead
i would yield ω1D(i) = 0. The maxima of this
function along the chain indicate regions of max-
imum local self-entanglement. This quantity has
been previously used to identify supercoiled plec-
tonemes in simulated DNA [7, 8], branches in ring
polymers [6] and self-entanglements in proteins [9].

• Segment-to-All (StA) writhe: we numerically
compute the global or non-local crossing number
by

ωStA(i) =
2

4π

i+ lw
2∑

k=i− lw
2

N∑
l=0

(tk,k+1 × tl,l+1) · (rk − rl)

|rk − rl|3

(8)
which measures the entanglement of a polymer seg-
ment centred at bead i against the rest of the poly-
mer contour. Eq. (8) is a generalisation of Eq. (7)
where we do not restrict the calculation of the av-
erage crossing number to occur between contiguous
polymer segments.

• Segment-to-Segment (StS) writhe: we nu-
merically compute the global or non-local crossing
number by

ωStS(i, j) =
2

4π

i+ lw
2∑

k=i− lw
2

j+ lw
2∑

l=j− lw
2

(tk,k+1 × tl,l+1) · (rk − rl)

|rk − rl|3

(9)
which measures the entanglement of a polymer seg-
ment centred at bead i against the segment centred

at bead j. The window lw is taken to be the per-
sistence length l = 10σ for most simulations.

Physically, Eqs. (7)-(9) effectively compute the aver-
age number of times the contiguous (for 1D) and non-
contiguous (for 3D) segments of the polymer display
crossings when observed from many different directions.
A graphical and detailed description of these representa-
tions can be found in Ref. [10]. Below, we also refer to
these quantities as “geometric representations” and they
naturally lend themselves to be used as input features for
neural networks because they are invariant under trans-
lations and rotations of the conformation and under re-
labelling of the beads.

This is by no means an exhaustive list of geometric
features, and others have been implemented in the past
for instance looking at pairwise distances between neigh-
bouring or distant points along the knotted curves [11–
13]. Yet, we argue that distances between segments are
insensitive to the sign of the entanglement and will, as
shown in the main text, yield less accurate ML models,
as found with the unsigned writhe (see Fig. 1 in the main
text).

KNOTS SHARING TOPOLOGICAL
INVARIANTS

Among the knots considered in this work, many share
one or more topological invariants. In Table I we sum-
marise the couples/triplets of knots up to 10 crossings
that display the same Alexander polynomial, for infor-
mational purpose.

98 814 10131 10135 1034
946 61 10133 76
92 74 10132 51
929 928 10163 10130 75
924 818 10129 88
10165 915 10103 1040
10164 1010 1098 1087
10162 1020 1077 1065
10156 816 1068 1031
10155 89 1063 938
10150 10127 1059 940
10149 920 1056 1025
10147 811 1054 1012
10143 810 1052 1023
10141 85 1037 1028
10140 820 1024 1018
10136 821 101 83

TABLE I. Table summarising pairs or triplets of knots sharing
the same Alexander polynomial.

3

NEURAL NETWORKS & TRAINING

The number of neurons comprising the input layer was
determined according to the type of knot representation;
the Cartesian coordinate and adjacent monomer distance
representations used 3 neurons (one for each dimension)
per bead, totalling 300 input neurons for N = 100 beads
polymers, whilst most other geometric representations
used one neuron per monomer, totallingN input neurons.
The StS writhe representation used N×N input neurons.

Architecture optimisation

The optimal number of hidden layers, hidden units
and other hyperparameters (including learning rate and
batch size) for the FFNN were determined via an au-
tomated hyperparameter tuning software provided by
Keras, known as KerasTuner [14], utilising an optimised
random-grid search method with adaptive resource allo-
cation and early stopping [15]. This scheme randomly
selects a set of hyperparameters satisfying predefined
ranges, builds the corresponding NN architecture and
trains the model with the input representation for a set
number of epochs before testing. This procedure is re-
peated for a given number of repetitions to find the best
performing model and architecture. This hyperparame-
ter tuning was achieved using the XYZ representation.

The hyperparameters obtained from this procedure are
reported in Table II.

Hyperparameter Value
Batch Size 256

N. hidden layers 4
N. hidden neurons in layer 320

Activation function ReLU
Learning rate 10−3

Weight Initialisation Xavier Uniform Initialiser
Optimisers Adam

Loss function Sparse Categorical Cross-Entropy

TABLE II. A summary of the hyperparameters used for the
FFNN using KerasTuner. The total number of trainable pa-
rameters is roughly 4 105.

Conversely, the RNN architecture was built without
hyperparameter tuning, and we roughly matched the hy-
perparameters reported in Ref. [12] and summarised in
Table III. We note that in contrast with Ref. [12] we
chose the hidden layer activation function to be the hy-
perbolic tangent (tanh) as opposed to the ReLU func-
tion, as the TensorFlow GPU configuration was better
optimised. We also used fewer number of hidden layers.

Following hyperparameter tuning, each knot feature
representation was used to train, validate and test the
performance of the different models on each task, result-
ing in a corresponding classification or localisation accu-

Hyperparameter Value
Batch Size 256

N. hidden layers 4 (2nd bidirectional)
N. hidden neurons in layer 100

Activation function Hyperbolic Tangent
Learning rate 10−5

Weight Initialisation Xavier Uniform Initialiser
Optimisers Adam

Loss function Sparse Categorical Cross-Entropy

TABLE III. A summary of the hyperparameters considered in
this work for the RNN model to match the ones in Ref. [12].
The total number of trainable parameters is roughly 4 · 105.

racy. For consistency, all NNs were trained for a maxi-
mum of 1000 epochs (though this limit was never reached,
in practice), before utilising the testing set. These clas-
sification scores were then compared to determine which
knot representation was optimal. Early stopping was
used to prevent over/under fitting the NNs to the train-
ing data, improving generalisation and making training
more computationally efficient [16]. In our case, early
stopping meant training was halted when the validation
error did not improve by a minimum of 0.001 over the
course of 10 epochs; at this point, the weights producing
the lowest validation error were restored for the testing
phase. The NNs were implemented via the deep learning
Python library TensorFlow with Keras 2.0 back-end [17]
as this provided a simple and standardised framework for
supervised learning tasks, with many highly optimised
ML classes readily accessible.

Dataset Splitting

In each task, our datasets were firstly partitioned into
a stratified training-validation-testing split of 72%-18%-
10%, respectively (chosen to match that selected by Van-
dans et al. [12]). For larger datasets, it was more efficient
to adopt the splitting 90%-2.5%-7.5% to reduce the I/O
load on the hardware during the validation step. This
stratified split randomly allocates conformations to each
set whilst maintaining equal proportions of each knot
type, ensuring each split is equally representative of the
knots being classified [18].

To prove that the splitting choice does not affect the
final result, we considered three different splits of the
5 class dataset and trained/tested using such configura-
tions. In Figure S1, results from the testing procedure
indicate that accuracy is largely unaffected by the split-
ting choice; we therefore decided to adopt the choice with
the largest training dataset to improve network robust-
ness.

4

FIG. S1. Accuracy versus choice of split for RNN (left) and
FFNN (right), respectively. The three different splits used for
this comparison are reported on the x-axis.

Convergence

Convergence time depends on the input dataset and
the feature used, as it is related to early stopping con-
ditions and to how easily a NN can learn from a certain
input feature. We noticed that for all the cases consid-
ered, training using XYZ coordinates takes many more
epochs to converge, as opposed to training with StA or
StS (Fig. S2). In fact, the number of epochs needed to
train the NN with the StA and StS are minimally affected
by the size of the classification problem. In Fig. S2 we
plot, from left to right, training accuracy versus epochs
for a 5 (≤ 5 crossings knots), 8 (≤ 6 crossing knots) and
15 (≤ 7 crossing knots) class problem.

FIG. S2. Validation accuracy versus training epoch for a
FFNN, from left to right up to 5 (A), 6 (B) and 7 (C) crossing
knots datasets.

Effects of flexibility on network accuracy

It is reasonable to assume that the flexibility of the
polymers in the dataset may affect the final training accu-
racy. This is because stiffer polymers may display fewer
non-essential self-crossings than flexible ones. To test
how robust our NN approach is with respect to curve flex-
ibility, we generated new datasets using polymers with
lp = 1 and lp = 5 for the 5-knots problem. We observed
a sharp decrease in accuracy for most of the features and
model architectures, in particular for XYZ-trained mod-

els (Fig. S3). We also implemented a different ML algo-
rithm using a random forest model to compare with our
neural network approaches. This model – with 300 trees
and up to 4 · 106 nodes – dropped from 98% (lp = 10σ)
to ∼ 70% (lp = 1σ) accuracy when trained on StA or
StS writhe features, suggesting that this architecture is
sensitive to small scale fluctuations of the polymer con-
tour. At the same time, and irrespective of the precise
NN architecture employed, XYZ coordinates yielded the
poorest accuracy across the board (Fig. S3). In marked
contrast to this, we observed that for both RNNs and
FFNNs, training with StS writhe consistently returned
an extremely high accuracy (>99%) for any persistence
length investigated, strongly supporting the strength of
this geometric feature over others.

Effects of increasing complexity on network accuracy

To test the robustness of our approach as a function of
knot complexity (rather than size of classification prob-
lem), we choose four different combinations of 5 knots
with increasing minimum crossing number and test the
accuracy of the NNs on these different problems. More
specifically, we consider these problems: (P1) 01, 31, 41,
51, 52 (P2) 51, 52, 61, 62, 63 (P3) 51, 52, 71, 72, 73 (P4)
91, 942, 101, 102, 1071, which have increasing average
minimum crossing number (or complexity) from around
3 to roughly 10. Notably, the last problem contains some
knots that share the same HOMFLY polynomials. We
provide confusion matrices and accuracies for these prob-
lems, tackled by FFNN with different input features in
Fig. S4. Interestingly, the StS and StA features main-
tain an accuracy above 98% across the four problems.
At the same time, and strikingly, the XYZ-trained NN
yields more accurate predictions for higher complexity
problems although remain well below the writhe-trained
models.

Testing trained networks on longer knots

To further prove the generality of our features and
models, we tested a network previously trained on knots
with contour length N = 100 by feeding it features com-
puted on knots with contour length N = 200. More
specifically, we considered the StA writhe feature and
binned it by summing adjacent beads to generate a 100-
beads long StA signal. Testing our StA-trained NN on
such data returned an accuracy of 89.9% (compared with
a 95% accuracy score obtained by training the network
directly on these 200σ long configurations), demonstrat-
ing that the network is robust enough to yield a reason-
able accuracy even when given knots of longer length.
Note that many LSTMs can be trained using a zero-
padding method to accept data of variable input size.

5

This strategy could be used to make our pre-trained NNs
more accurate in handling polymers of different lengths.

Additionally, we tested the robustness of the StS
writhe feature by training a FFNN network on a 5 class
classification problem with N = 200 beads long poly-
mers. In Fig. S5 one can appreciate that training the
FFNN with the StS writhe feature retains a very high ac-
curacy even with longer polymers, while the StA writhe
and XYZ trained NNs display a significant reduction in
accuracy.

Testing trained networks on never seen knots

We have also tested our trained FFNNs on never-seen
knots. Specifically, we tried to classify a 61 (twist) and 71
(torus) knot using 5-class XYZ and StA trained networks.
The results is that the StA is better than XYZ at iden-
tifying the geometric family of the knot, so for instance
the 61 is more frequently classified as closest twist knot
(41) by the StA than the XYZ feature. Similarly, the StA
convincigly classifies the 71 as the closest torus knot 51.
These results are similar to the ones obtained in Ref. [13]
(see Fig. S6). The fact that StA-trained networks pre-
dict a 41 knot when fed with a 61 may imply that these
models give more importance to the pattern of entan-
glements rather than the absolute number of crossings.
Oppostely, XYZ-trained models appear to give more im-
portance to the total number of crossings irrespectively
of their orientation.

Principal Component Analysis

In order to better understand the relationship between
different knots and how these are represented in the
XYZ and local writhe spaces, we have performed prin-
cipal component analysis (PCA) on 1000 configurations
of the first 5 simplest knots. As expected, the (COM-
subtracted) XYZ coordinates of the knots all cluster to-
gether in the reduced PC space, and display reduced
spreading due to the topological constraints on more
complex knots (Fig. S7). On the contrary, the StA writhe
features, originally living in a 100-dimensional space (one
value per bead index) are clearly separated in the reduced
2D PCA space (Fig. S7). One key observation is that the
distributions could be clustered even with a single PCA
dimension and that the pair of knots whose StA distri-
butions partially overlap are the 01 and 41 because their
global writhe is the the same and is zero. Global writhe
is not unique for different knots and so we expect a large
degree of co-clustering when more complex knots are in-
cluded in the analysis. Finally, StA features identify a
100x100 dimensional space which is then less efficiently
clustered in separate regions in the reduced 2D PCA plot
(Fig. S7).

Robustness of models trained with StA features
computed using different window lengths

There is a natural length scale for the window length
lw to be used when computing the StA and StS writhe
that is the scale of polymer fluctuations. Effectively, our
unit length of self-entanglement has to be the persis-
tence length lp. Taking window length much bigger than
the persistence length leads to smoothing of entangle-
ment features (see also Ref. [19], Appendix C, Fig. 12).
Nonetheless, we repeated the 5 class training of our ML
models with different window lengths and – surprisingly
– the accuracy is very robust (see Fig. S8). We find that
it decreases significantly only when the window length
equals the whole polymer length, in which case StA is
constant and equals the global writhe. In this case, we
find that, as expected, the knots 01 and 41 are confused
with each other as they have the same global writhe, i.e.
zero [20] (see Fig. S8). In general, we thus expect that
as long as lw < N the ML models will be able to use StA
and StS writhe to efficiently distinguish knots. Instead,
when lw ≃ N , the accuracy will become worse when more
complex knots with similar global writhe are included in
the training.

Localisation of knots on open curves

In this section we have attempted the localisation of
knots on open curves. More specifically, we used the
RNN model trained at localising knots within closed
curves and asked if it could detect knotted segments
within an open curve initially prepared as a 51 knot.
The model can detect the shortest knotted portion of the
curve even on open curves on which it was not trained on
(see Fig.S9). The model trained on StA features is, once
again, more accurate at identifying the shortest knotted
contour. Interestingly, notice the last snapshot before un-
knotting is completely missed by the XYZ-trained model
(predicted knotting probability Pk is constant and below
0.5), while the StA-trained network can correctly identify
a short knot, as identified through kymoknot.

∗ joint first author
† corresponding author, davide.michieletto@ed.ac.uk

[1] K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057
(1990).

[2] S. Plimpton, J. Comp. Phys. 117, 1 (1995).
[3] L. Tubiana, E. Orlandini, and C. Micheletti, Phys. Rev.

Lett. 107, 1 (2011).
[4] L. Tubiana, G. Polles, E. Orlandini, and C. Micheletti,

European Physical Journal E 41, 1 (2018).
[5] A. Stasiak, V. Katritch, J. Bednar, D. Michoud, and

J. Dubochet, Nature 384, 122 (1996).

6

[6] D. Michieletto, Soft Matter 12, 9485 (2016).
[7] K. Klenin and J. Langowski, Biopolymers 54, 307 (2000).
[8] J. Smrek, J. Garamella, R. Robertson-Anderson, and

D. Michieletto, Science Advances 7, 1 (2021).
[9] M. Baiesi, E. Orlandini, F. Seno, and A. Trovato,

Journal of Physics A: Mathematical and Theoretical 50
(2017), 10.1088/1751-8121/aa97e7.

[10] J. L. Sleiman, R. H. Burton, M. Caraglio, Y. A. Gutier-
rez Fosado, and D. Michieletto, ACS Polym. Au 2, 341
(2022).

[11] P. Johanns, P. Grandgeorge, C. Baek, T. G. Sano, J. H.
Maddocks, and P. M. Reis, Extreme Mechanics Letters
43, 101172 (2021).

[12] O. Vandans, K. Yang, Z. Wu, and L. Dai, Physical Re-
view E 101, 1 (2020).

[13] A. Braghetto, S. Kundu, M. Baiesi, and E. Orlandini,
Macromolecules 56, 2899 (2023), arXiv:2212.11822.

[14] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin,
L. Invernizzi, et al., “Keras Tuner,” https://github.

com/keras-team/keras-tuner (2019).
[15] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and

A. Talwalkar, Journal of Machine Learning Research 18,
1 (2018).

[16] Y. Yao, L. Rosasco, and A. Caponnetto, Constructive
Approximation 26, 289 (2007).

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Mur-
ray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Watten-
berg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,”
(2015), software available from tensorflow.org.

[18] K. Sechidis, G. Tsoumakas, and I. Vlahavas, in Ma-
chine Learning and Knowledge Discovery in Databases,
edited by D. Gunopulos, T. Hofmann, D. Malerba, and
M. Vazirgiannis (Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2011) pp. 145–158.

[19] D. Michieletto, Soft Matter 12, 9485 (2016).
[20] A. Stasiak, V. Katritch, and L. Kauffman, Ideal Knots,

K & E series on knots and everything (World Scientific,
1998).

7

FIG. S3. Confusion matrices for XYZ, StA and StS writhe input features (from left to right) for datasets generated using
different persistence lengths, lp = 1σ and lp = 5σ (the case lp = 10σ is reported in the main text) for a 5-class classification
problem. At the bottom, we plot the accuracy versus the persistence length for the different input features and different
architectures (random forest, FFNN and RNN).

8

FIG. S4. Confusion matrices for XYZ, StA and StS writhe input features (from left to right) for different combinations of
knots in a 5-class classification problem. At the bottom, we plot the accuracy versus the average knot complexity, defined as
the average minimal crossing number of the knots considered in each problem. The precise knot types in each problem are
reported on the confusion matrices.

9

FIG. S5. Accuracy versus knot length N , for a FFNN trained to classify the 5 simplest knots using different input features.
The StS representation remains robustly close to 100% accuracy (99.5%) even on longer polymers.

FIG. S6. Fraction of predicted knots, over 7500 instances of 61 or 71 knots never seen by a 5-class XYZ or StA model. The 61
is classified either as a 52 or as 41 (both twist knots) by the XYZ and StA trained NNs respectively. The 71 is convincingly
classified as a 51, the closest torus knot.

10

FIG. S7. From left to right: PCA for XYZ, StA and StS features.

FIG. S8. A StA writhe for the 41 using different window lengths. B StA writhe for the 51 using different window lengths. C
Accuracy of the models as a function of window length. D Confusion matrices for the 5 class classification problem for different
window lengths.

FIG. S9. From left to right the undoing of a 51 knot to simpler topologies. The unknotting stages and location of shortest
knotted arcs are well tracked by the localisation RNN model trained with StA features.

