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Fig. S1 An enlarged version of Figure 1 from the main text. a) Images during the four stages of deep indentation and puncture from a representative run
in a vial performed with a sample radius of 13 mm and height of 28.342 mm at a displacement rate of 0.1 mm/s. b) Plot of the imposed displacement
against time with the image locations marked via colored circles. c) Plot of the measured force against displacement during deep indentation and
puncture with the four stages of this test marked (i-iv). The critical puncture force Fc and displacement dc are marked by the grey star and dashed lines.
Additionally, the mechanical behavior that can be characterized during each stage has been labeled with underexplored areas denoted by question
marks.
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Large Vial R=13 mm

Fig. S2 Expanded plots from Figure 2a in the main text.
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Small Vial R=7.1 mm

Fig. S3 Expanded plots from Figure 2b in the main text.

Small Vial R=7.1 mm

Fig. S4 Expanded plots from Figure 2b in the main text with the same x axis as Figure 2a.
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Large Vial R=13 mm

Fig. S5 Expanded plots from Figure 4a in the main text.
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Table S1 Summary of the variable height deep indentation and puncture data gathered in this work. R, H, and E were quantified by small strain
indentation. NP stands for no puncture and T stands for tubular.

Sample R (mm) a (mm) H (mm) E (kPa) dc (mm) Fc (N) Crack Morphology
Big3-1 13 0.359 5.935 73.6 5.435 – NP
Big3-2 13 0.359 5.723 65.1 5.224 – NP
Big3-3 13 0.359 5.663 73.4 5.150 – NP

Big3.5-1 13 0.359 6.751 125.9 6.224 4.5425 T
Big3.5-2 13 0.359 6.718 126.9 6.013 4.5505 T
Big3.5-3 13 0.359 6.604 116.1 5.564 2.2113 T
Big4-1 13 0.359 7.277 84.8 6.723 2.9328 T
Big4-2 13 0.359 7.365 82.3 6.863 3.4357 T
Big4-3 13 0.359 7.494 88.4 6.979 – NP

Big4.5-1 13 0.359 8.265 81.8 7.751 4.1103 T
Big4.5-2 13 0.359 8.367 81.7 7.662 3.0451 T
Big4.5-3 13 0.359 8.309 80.2 7.773 3.7672 T
Big5-1 13 0.359 9.345 79.8 7.970 2.8921 T
Big5-2 13 0.359 9.492 80.6 7.854 2.6244 T
Big5-3 13 0.359 9.613 83.3 8.281 3.2131 T

Big5.5-1 13 0.359 10.499 73.6 9.051 3.3271 T
Big5.5-2 13 0.359 10.503 71.8 8.459 2.7294 T
Big5.5-3 13 0.359 10.658 75.8 8.321 2.5889 T
Big6-1 13 0.359 11.647 75.6 9.712 3.4684 T
Big6-2 13 0.359 11.058 73.0 8.744 2.7186 T
Big6-3 13 0.359 11.598 75.9 8.556 2.5402 T
Big9-1 13 0.359 17.687 76.4 10.194 3.5457 T
Big9-2 13 0.359 17.129 72.8 9.917 3.1367 T
Big9-3 13 0.359 16.838 68.5 9.645 2.7165 T

Big12-1 13 0.359 22.609 70.5 10.429 3.3383 T
Big12-2 13 0.359 22.996 67.1 8.298 1.9307 T
Big12-3 13 0.359 22.551 66.4 9.579 2.5394 T
Big15-1 13 0.359 28.233 70.5 10.143 3.1384 T
Big15-2 13 0.359 28.358 66.8 7.13 1.3813 T
Big15-3 13 0.359 28.069 67.7 10.878 3.5208 T
Small1-1 7.1 0.359 6.291 68.8 5.778 – NP
Small1-2 7.1 0.359 6.180 65.6 5.673 – NP
Small1-3 7.1 0.359 6.406 64.8 5.899 – NP

Small1.5-1 7.1 0.359 9.232 102.0 7.162 3.7982 T
Small1.5-2 7.1 0.359 8.987 69.7 7.810 3.1123 T
Small1.5-3 7.1 0.359 10.080 58.1 8.126 2.8328 T
Small2-1 7.1 0.359 12.139 49.0 6.708 1.8158 T
Small2-2 7.1 0.359 12.105 66.7 7.119 2.3718 T
Small2-3 7.1 0.359 13.222 65.9 8.003 3.1207 T
Small3-1 7.1 0.359 19.841 67.9 8.007 3.1767 T
Small3-2 7.1 0.359 18.749 66.6 7.935 2.9940 T
Small3-3 7.1 0.359 18.629 59.4 7.830 2.8569 T
Small4-1 7.1 0.359 25.610 64.6 7.035 2.3476 T
Small4-2 7.1 0.359 25.618 63.4 7.181 2.5027 T
Small4-3 7.1 0.359 25.661 65.4 7.099 2.3942 T
Small5-1 7.1 0.359 31.589 61.4 6.626 1.9887 T
Small5-2 7.1 0.359 31.662 58.0 7.668 2.8192 T
Small5-3 7.1 0.359 30.830 61.9 7.613 2.8224 T

EXT 23.5 0.359 30 33.053 12.4 1.69118 T
EXT 23.5 0.359 30 32.46 14.2 2.24488 T
EXT 23.5 0.359 30 32.15 13.2 1.8895 T

6 | 1–21



Table S2 Summary of the variable velocity deep indentation and puncture data gathered in this work.

Sample R (mm) a (mm)
Velocity
(mm/s)

dc (mm) Fc (N) ∂F
∂d (N/m) Fprop (mN)

Big15-1 13 0.359 0.1 10.370 2.7164 61.08 542.1
Big15-2 13 0.359 0.1 10.192 2.6818 78.48 439.5
Big15-3 13 0.359 0.1 10.193 2.6892 71.43 620.6
Big15-4 13 0.359 0.1 10.263 2.7757 90.18 388.1
Big15-5 13 0.359 1 9.081 2.0110 119.07 353.3
Big15-6 13 0.359 1 8.953 1.9078 130.20 218.65
Big15-7 13 0.359 1 8.837 1.9389 135.84 190.67
Big15-8 13 0.359 1 9.150 2.1710 128.18 338.20
Big15-9 13 0.359 10 9.564 2.4996 221.88 -122.82

Big15-10 13 0.359 10 9.714 2.4217 226.43 -236.61
Big15-11 13 0.359 10 9.262 2.5171 242.14 -315.70
Big15-12 13 0.359 10 9.812 2.6215 224.97 -81.42
Small5-1 13 0.359 0.1 8.904 2.8749 20.00 988.00
Small5-2 13 0.359 0.1 8.752 2.7280 40.71 488.73
Small5-3 13 0.359 0.1 8.694 2.8867 10.73 1116.96
Small5-4 13 0.359 0.1 8.231 2.6306 55.87 464.21
Small5-5 13 0.359 1 7.595 2.3455 95.02 718.33
Small5-6 13 0.359 1 7.179 1.9256 121.76 471.58
Small5-7 13 0.359 1 7.283 1.8827 114.52 523.89
Small5-8 13 0.359 1 8.038 2.5896 95.08 836.18
Small5-9 13 0.359 10 7.015 2.0167 238.49 112.38

Small5-10 13 0.359 10 7.714 2.4634 242.46 -72.00
Small5-11 13 0.359 10 7.712 2.7328 216.61 218.87
Small5-12 13 0.359 10 7.065 2.1950 229.74 168.77
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Fig. S6 a) A schematic of the setup used for performing small strain indentation. b) An example plot of the imposed displacement vs time curve for
small strain indentation using a 2 mm diameter steel cylinder on a gel with R = 13 mm and H = 28.233 mm. c) A example plot of the force-displacement
curve for the same sample showing how the stiffness (S = 191.8±0.9 N/m) is extracted from this curve.

2 Additional Characterization
2.1 Small Strain Indentation
Deep indentation and puncture were performed on a TA.XTPlus
Connect Texture Analyzer with a 50 N load cell. Large vials were
tested with a 2 mm diameter (a= 1 mm) flat cylindrical probe and
small vials were tested with the 22 gauge (inner and outer radius
of 0.207 mm and a = 0.359 mm, respectively) blunt-tipped steel
needle used during puncture measurements. Measurements were
performed at a displacement rate of 0.1 mm/s to a turnaround
force of 20 mN. A schematic of the setup and plots of represen-
tative data are shown in Figure S6. The displacement shown in
these plots has been shifted so that the zero point is defined by
the initial point of contact between the probe and the material.
The initial location of the probe was noted before running each
test and was combined with the initial contact displacement to
infer the sample height H values reported in Table S1.

Values of E were extracted from these measurements using the
observed sample stiffness S, obtained from the slope of the red fit
line Figure S6C. This stiffness can be used in combination with
sample dimensions to calculate E using,1

E =
3S
8a

[
1+1.33

a
H

+1.33

(
a
H

)3
]−1

, (S1)

which combines classic Hertzian contact mechanics with a correc-
tion factor for the finite axial size of the sample (approximately 1
for all sample heights tested). E values calculated in this manner
are reported in Table S1.

Plots of the sample volume V against the resulting sample
height are contained in Figure S7. The slope on this plot is de-
fined by the relationship,

V
H

= πR2, (S2)

where R is the radius of the sample. These fits indicate that R =

7.1 mm and R = 13 mm in the small and large vials, respectively.

8 | 1–21



a) b)

0 1 2 3
2

4

6

8

10

12

14

16

Vo
lu

m
e 

of
 M

at
er

ia
l (

m
L)

Height (cm)
5 10 15 20 25 30 35

1

2

3

4

5

Vo
lu

m
e 

of
 M

at
er

ia
l (

m
L)

Height (mm)

Small Vial Big Vial

Fig. S7 Plots of the volume of material used to make samples against the measured sample height for the a) small and b) big vial. The fitted slope
for the small (0.1585± 0.0009 mL/mm) and big (5.28± 0.02 mL/cm) were used to infer internal vial radius values of R = 7.1 mm and R = 13 mm using
Equation (S2).
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Fig. S8 Plots of the engineering stress σ against a) λ and b) λ −λ−2 for uniaxial extension. Additionally a Mooney plot is contained in c). These tests
suggest that this material displays some strain stiffening and little to no dependence on the dW

dI2
term.

2.2 Constitutive Response

2.2.1 Uniaxial Extension

Uniaxial extension was performed on a TA.XTPlus Connect Tex-
ture Analyzer with a 50 N load cell and monitored with a Dino-
Lite Edge Plus AM4117 series 1.3 MP camera. Measurements
were performed on rectangular strips that maintained a length
to width ratio of at least three for all samples. Samples were
stretched at a velocity of 1 mm/s (approximate strain rate of
0.025 s−1) until sample failure or slip at the clamp occurred.

Different representations of these measurements in the form
of plots of a) the engineering stress σ vs stretch ratio λ , b) σ vs
λ −λ−2, and c) σ

2(λ−λ−2)
vs λ−1 are shown in Figure S8. The large

spread observed in the ultimate failure strain is likely caused by
the use of rectangular strips instead of dogbone shaped samples,
which allows stress concentrations at the clamp to influence the
failure point. E reported in the main text was extracted from the
initial linear region of plot b) where the slope is E

3 .2 The plot in
b) is used for this because the fit can be extracted from data up
to ∼ 50% strain instead of the ∼ 10% strain (where the experi-
mental errors can be large) that is usable from the plot in a). The
Mooney plot representation3,4 in c) highlights that significance of
these errors in the first 5−10%. The horizontal plateau observed
once these errors become negligible suggests that this material
has little to no dependence on the dW

dI2
in tension. Some strain

stiffening of the samples is apparent in all three representations.
Data from cyclic extension measurements is shown in Fig-

ure S9. A sample was strained at a rate of 1 mm/s (0.03 s−1)
to a maximum turnaround strain for 5 cycles before the strain
was increased for a further 5 cycles; this process was repeated
with incremental increases in strain until the sample eventually
failed. The displacement vs time curve and resulting force vs dis-
placement curve are shown in Figure S9a-b. This measurement
shows that the loading and unloading curve are nearly identical
and overlap well. A plot of the resilience and max applied strain
against cycle number is shown in Figure S9c. The resilience is
calculated as the percent of energy recovered during one cycle
normalized by the energy input during that cycle. For this mate-
rial, all strains showed a resilience of greater than 94% indicating
that there is not significant energy loss during deformation.

2.2.2 Uniaxial Compression

Uniaxial compression was performed on a TA.XTPlus Connect
Texture Analyzer with a 50 N load cell and monitored with a
Dino-Lite Edge Plus AM4117 series 1.3 MP camera. Measure-
ments were performed on circular disks with a diameter of ap-
proximately 11.3 mm and heights of approximately 2.6 mm. Sam-
ples were compressed between platens lubricated with 100 cSt
trimethylsiloxy terminated polydimethylsiloxane at a velocity of
0.1 mm/s (approximate strain rate of 0.038 s−1). Two samples
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Fig. S9 Plots of a) displacement vs time and b) force vs displacement for cyclic extension measurements. A plot c) of resilience and max applied strain
vs cycle number shows that there is not significant energy loss during deformation.
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Fig. S10 Plots of the engineering stress σ against a) λ and b) λ −λ−2 for uniaxial compression. Additionally a Mooney plot is contained in c). These
tests suggest that this material displays some strain stiffening and little to no dependence on the dW

dI2
term at small strains.

were stopped once the force hit 50 N (the capacity of the load
cell employed) while a third sample was stopped at a turnaround
displacement of 3.5 mm (λ ≈ 0.38).

Different representations of these measurements in the form of
plots of a) the engineering stress σ vs stretch ratio λ , b) σ vs
λ − λ−2, and c) σ

2(λ−λ−2)
vs λ−1 are shown in Figure S10. The

σ vs λ curve shows similar moduli before increasing in stress.
The σ vs λ −λ−2 curve shows that some strain stiffening occurs
beyond that predicted by a simple neo-Hookean model. Finally,
the Mooney plot shows that the constitutive response has little to
no dependence on dW

dI2
at small strains before stiffening.

2.2.3 Fitting a Strain Energy Density Function

Due to the higher-order nonlinearities and the stress stiffening
effects, Ogden’s hyperelastic strain energy potential has been
adopted for characterizing the elastic behavior of the gel. Fur-
thermore, the incompressibility condition was also applied based
on the results of the radially confined compression tests. There-
fore, the applied strain energy density potential can be expressed
using the notation in Abaqus5,6 as

W =
N

∑
i=1

2µi

α2
i

(
λ

αi
1 +λ

αi
2 +λ

αi
3 −3

)
, (S3)

where N denotes the order of the hyperelastic potential, λ1,λ2

and λ3 are the principal stretches, µi and αi are material param-
eters. The initial shear modulus for Ogden’s hyperelastic model
becomes

µ0 =
N

∑
i=1

µi, (S4)

which leads for the incompressible case that the Young’s modulus
is given as

E =
N

∑
i=1

3µi. (S5)

For uniaxial (UA) deformations the deformation gradient can
be written as

F =

λ 0 0
0 λT 0
0 0 λT

 , (S6)

where λ and λT are the stretch in the longitudinal and trans-

verse directions, respectively. The right Cauchy–Green deforma-
tion tensor can be expressed as

C = FT F =

λ 2 0 0
0 λ 2

T 0
0 0 λ 2

T

 . (S7)

Due to incompressibility

J = detF = λλ
2
T ≡ 1 (S8)

holds, and thus
λT = 1/

√
λ . (S9)

The principal stretches can be obtained as the eigenvalues and
eigenvectors of U =

√
C, which gives

λ1 = λ ; λ2 = λT = λ
−1/2; λ3 = λT = λ

−1/2. (S10)

Based on the strain energy density function the principal
Cauchy stresses can be obtained as

σi = λi
∂W
∂λi

+ p for N = 1,2,3 (S11)

where p is the unknown hydrostatic stress that can be deter-
mined using the stress-free condition in the transverse directions,
namely σ2 = σ3 ≡ 0. After substituting Equation (S3) into Equa-
tion (S11), the principal Cauchy stress solutions for uniaxial load-
ing can be expressed as

σ1 =
N

∑
i=1

λ1
2µi

αi

(
λ

αi−1
1

)
+ p, (S12)

σ2 = σ3 =
N

∑
i=1

λT
2µi

αi

(
λ

αi−1
T

)
+ p. (S13)

Using the condition that σ2 = σ3 ≡ 0 and substituting into Equa-
tion (S10) the unknown hydrostatic pressure can be obtained as

p =−
N

∑
i=1

λT
2µi

αi

(
λ

αi−1
T

)
=−

N

∑
i=1

λ
−1/2 2µi

αi

(
λ

1/2−αi/2
)
. (S14)

Substituting back into Equation (S12) gives the incompressible
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Cauchy stress solution for uniaxial loading, namely

σ1 =
N

∑
i=1

2µi

αi

(
λ

αi −λ
−αi/2

)
. (S15)

Using the relation between the first Piola–Kirchhoff (engineer-
ing) stress (P) and the Cauchy stress (σ), namely P = JσFT gives
that the incompressible first Piola–Kirchhoff stress solution for
uniaxial loading can be written as

P1 = σ1/λ , (S16)

from which the engineering stress solution becomes

σ
eng = P1 =

N

∑
i=1

2µi

αi

(
λ

αi−1 −λ
−αi/2−1

)
. (S17)

Hereafter, the material parameters of Ogden’s hyperelastic po-
tential were fitted to the uniaxial engineering stress curves for
both tension and compression (see Figure S11). The quality func-
tion was defined as the Mean Squared Difference (MSD), namely

Q =
1
K

K

∑
k=1

(
σ

eng,exp
k −σ

eng(λ
exp
k )

)2
, (S18)

where k stands for the number of captured data points in uniax-
ial tests. The global minimization of the quality function using
the Nelder-Mead optimization algorithm.7 The accuracy of the
models could be quantified by the coefficient of determination
R2, which is defined as

R2 = 1−

M
∑

i=1

(
f meas
i − f fit

i
)2

M
∑

i=1

(
f meas
i − f̄

)2
(S19)

where f stands for the quantity to be compared, while f̄ is its
average value. The value of R2 should satisfy 0 < R2 ≤ 1, where

R2 = 1 represents the perfect fit.8

The results of the parameter fitting to 3 compression and 5 ten-
sile test curves (with K = 354 data point) clearly show that the Og-
den’s hyperelastic model is capable of characterizing the uniaxial
elastic behavior of the gel. The accuracy of the first-order (N = 1)
model is acceptable, however at elevated compressive strains the
deviation from the measurement curve increases. However, the
second and third-order model shows excellent fitting only with
minor adjustment in the parameters. The fitted material parame-
ters and the corresponding statistics for the fitting procedures are
listed in Table S3. The quality function also indicates shows that
the mean squared difference is 0.02501 kPa for the first-order fit-
ting and 0.02255 and 0.02235 for the second- and third-order
fits, respectively.

Table S3 Summary of the fitted material parameters using Ogden’s hyperelastic potential and the fitting statistics

Model order µ1 α1 µ2 α2 µ3 α3 Q R2 Fitting time
N (kPa) (-) (kPa) (-) (kPa) (-) (kPa) (-) (s)
1 24.828 2.3712 - - - - 0.02501 94.95% 2.09
2 24.364 2.3873 0.0764 -5.5977 - - 0.02255 99.79% 25.65
3 24.558 2.3033 0.0601 -5.8438 0.001353 11.6049 0.02235 99.88% 197.508
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Fig. S12 Schematic of the sample geometry and an example force vs time curve for the tear test performed at 0.1 mm/s.

2.3 Tear Tests
Tear tests were performed on a TA.XTPlus Connect Texture Ana-
lyzer with a 50 N load cell. Trouser samples where the legs are
pulled in opposite directions out-of-plane where used, as shown
in Figure S12A. In this geometry, the average propagation force
FAve can be related to the fracture energy Gc through the sample
thickness T .9

Gc =
2FAve

T
(S20)

This relation assumes that deformation in the legs is negligible.
A schematic and plot of example data fort this test is contained
in Figure S12. FAve is calculated by averaging the force values
only during the crack propagation stage. Summary of the data
gathered is contained in Table S6.

Table S4 Summary of the tear tests that were performed on trouser samples.

Sample Displacement Rate (mm/s) c (mm) L (mm) W (mm) T (mm) FAve (mN) Gc (N/m)
0.1-1 0.1 27.1 89.2 49.4 2.85 272.6 191.3
0.1-2 0.1 27.9 88.5 46.6 3.2 284.7 177.9
0.1-3 0.1 29.4 89.3 48.4 2.77 262.2 189.3
1-1 1 25.1 88.3 50.3 2.83 435.2 307.6
1-2 1 25.9 87.8 48.9 2.1 360.2 343.0
1-3 1 23.5 88.3 50.6 2.8 341.7 244.1
1-4 1 28.7 87.5 50.3 3.2 365.5 228.4

10-1 10 23.9 86.9 47.6 2.9 505.8 348.8
10-2 10 – 87.8 52.2 2.6 515.1 396.2
10-3 10 24.4 87.6 49.5 3.1 574.9 370.9
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Fig. S13 Surface scan and line profile of the walls of the needle used in this study. Fitting this curvature shows that the needle radius is a =

359.3±0.7 µm (red fit).

2.4 Needle Tip Profile
Profiles of the needle walls and corner at the needle tip were
gathered on a Keyence VHS-5000 Microscope. A profile of the
needle wall is contained in Figure S13. The surface images
in Figure S13a-b show that the needle walls have a particular
texture. The needle was used as received and so this texture
must develop during the manufacturing process. A circular fit
to the profile in Figure S13c estimated the outer needle radius as
a = 359.3± 0.7 µm which is rounded to 0.359 mm in the main
text. A profile of the corner at the needle tip is shown in Fig-
ure S14. Fits to this profile suggest that the outside corner of the
needle has a radius of 80.5± 1.1 µm and the inside corner has a
radius of 55.7±0.4 µm.
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Fig. S14 Surface scan and line profile of the corner at the needle tip. Fits to the profile assuming a circular geometry suggest that the outer corner
profile has a radius of 80.5±1.1 µm (red fit) while the inner corner profile has a radius of 55.7±0.4 µm (blue green fit).
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Fig. S15 a) Plot of the storage and loss moduli vs time spent at 70◦C during curing of the material. b) Frequency sweep of the same sample after
equilibrating at 25◦C for 2 hours.

2.5 Rheometry
Oscillatory measurements to monitor curing and quantify the rhe-
ological response of the blend used in this study was performed
on a TA Instruments AR-G2 stress-controlled rheometer with a 40
mm steel parallel plate geometry with a gap of 400 µm. Uncured
material was loaded into the rheometer at room temperature. The
temperature was then increased to 70◦C and held at this temper-
ature while the curing was monitored by measuring the moduli at
a frequency of 10 rad/s and strain amplitude of 0.1% every 5 min-
utes for 21 hours. After 21 hours, the sample was equilibrated to
25◦C for 2 hours. Finally, a frequency sweep was performed from
0.01 rad/s to 628.319 rad/s with an amplitude of 0.1% strain.

A plot of the shear storage µ ′ and loss µ ′′ moduli during the
curing process is shown in Figure S15a. The gel point, defined as
the point at which µ ′ = µ ′′, occurs at approximately 15 minutes as
seen in the inset. The material continues to cure before the µ ′ and
µ ′′ appear to level off at long cure times as the catalyst diffuses
about the system and crosslinks the reactants together to form
network junctions. This suggests that the 21 hours that the mate-
rial cures at high temperature gives sufficient time for the curing
reaction to proceed to the point that, even though the catalyst
remains active at room temperature, we would not expect to ob-
serve a significant increase in the stiffness of the material due to
the formation of further network junctions at room temperature.
A plot of µ ′ and µ ′′ against frequency is contained in Figure S15b.
This plot shows that the µ ′ that develops is fairly independent of
frequency and slightly increases at frequencies above 10 rad/s. E
is estimated from the average of 3µ ′ up to 10 rad/s as 58.1± 4.3
kPa. In this frequency range µ ′ >> µ ′′.
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Fig. S16 a) Schematic and b) image of the linear reciprocating tribometer 10 employed in this work to measure sliding friction. The needle is perpen-
dicular to the direction of reciprocation.

2.6 Sliding Friction Measurements
Sliding experiments were conducted with a custom-built linear
reciprocating tribometer, as shown in Figure S16. A chrome steel
spherical probe (radius of curvature, a = 2.38 mm) and a 22
gauge blunt-tipped steel needle (outer radius, a = 0.355 mm
measured via calipers) were mounted to a double-leaf cantilever
with normal and tangential spring constants of 180 µN/µm and
525 µN/µm, respectively. The needle was attached horizontally
to the cantilever such that the long axis was perpendicular to
the sliding direction (Figure S16b). Silicone samples (10 mm
wide) were placed on a motorized stage (Physik Instrumente, L-
509.20DG10, 52 mm travel range), and the friction coefficient

Table S5 Summary of the estimated maximum contact pressures at the
center of contact for the two different probe geometries.

Probe
geometry

a (mm)
Force
(mN)

Estimated
contact
pressure

(kPa)
Spherical

probe
2.38 0.5 4.58

1 5.77
2.5 7.83

Needle 0.355 0.5 1.83
1 2.59

2.5 4.10
3.1 4.57
5 5.80

was measured at four different sliding speeds (v = 0.1, 0.5, 1, 2
mm/s). With the spherical probe, three normal forces (Fn = 0.5,
1, 2.5 mN) were applied for a sliding path, l, (1/2 cycle) of 3 or
4 mm, depending on the normal force. The sliding paths were
chosen to ensure that the sliding distance in one direction was
at least eight times the estimated Hertzian contact area radius at
maximum normal load. For the steel needle, a cylinder-on-flat
geometry was used to estimate the rectangular contact area and
applied pressure across five normal forces (Fn = 0.5, 1, 2.5, 3.1,
and 5 mN) along l = 3 mm. The estimated maximum contact
pressures at the center of contact for both probe geometries can
be found in Table S5 and were calculated using Equation (S21)
and Equation (S22).11

Psphere =
1
π

(
6FE∗2

a2

) 1
3

(S21)

Pcylinder =

(
FE∗

πLa

) 1
2

(S22)

Friction coefficients were calculated by averaging the normal
and friction forces within the middle 25% of the sliding path,
as depicted in Figure S17 with a representative friction force
loop. The following equation (Equation (S23)) was used to cal-
culate the average friction coefficient for each cycle, fcycle, where
Ff , f orward is the average friction force in the forward direction
and Ff ,reverse is the average friction force in the reverse direction.
The reported friction coefficients and standard deviations for each
normal load were determined by averaging fcycle over 100 cycles
to obtain f .

1–21 | 17



Fig. S17 Representative friction force loop for the needle at an applied
normal force of 2.5 mN and a velocity of 1 mm/s. The middle 25% of
the friction force in both the forward and reverse direction (denoted by
brackets and highlighted in red) is used to calculate the friction coeffi-
cient. Note that the peaks and valleys that are present in the free-sliding
region indicate that stick-slip is occurring during sliding.

fcycle =
< Ff , f orward >−< Ff ,reverse >

2 < Fn >
(S23)

Friction coefficients as a function of applied normal force and
maximum contact pressure for the spherical probe and needle are
displayed in Figure S18. The friction coefficient, f , decreases with
increasing normal load and pressure and generally increases with
increasing sliding velocity. Stick-slip also increases with increas-
ing velocity (Figure S19).
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Fig. S18 Plots of the friction coefficient against a) normal force, b) max contact pressure at the center of contact, and c) sliding velocity. These
measurements show that the friction coefficient decreases with increasing normal force and max pressure. The friction coefficient appears to increase
slightly with sliding velocity, but more rigorous studies need to be conducted to make any conclusions.

Fig. S19 Friction force loops for the a) needle and b) sphere probe geometries at various sliding velocities at an applied normal force of 2.5 mN. For
the needle probe, as the sliding speed increased, the stick-slip behavior increased.
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Table S6 Summary of the friction coefficient measurements performed in this work.

Probe a (mm)
Velocity
(mm/s)

Fn (mN) f

Chrome Steel Sphere 2.38 0.1 0.5 13.8±0.4
Chrome Steel Sphere 2.38 0.5 0.5 14.1±0.2
Chrome Steel Sphere 2.38 1 0.5 15.7±0.2
Chrome Steel Sphere 2.38 2 0.5 14.9±0.3
Chrome Steel Sphere 2.38 0.1 1 8.05±0.07
Chrome Steel Sphere 2.38 0.5 1 8.99±0.06
Chrome Steel Sphere 2.38 1 1 9.70±0.09
Chrome Steel Sphere 2.38 2 1 9.71±0.11
Chrome Steel Sphere 2.38 0.1 2.5 5.44±0.06
Chrome Steel Sphere 2.38 0.5 2.5 5.98±0.03
Chrome Steel Sphere 2.38 1 2.5 6.77±0.05
Chrome Steel Sphere 2.38 2 2.5 6.97±0.10

Steel Needle 0.359 1 0.5 6.33±0.15
Steel Needle 0.359 1 1 4.62±0.12
Steel Needle 0.359 0.1 2.5 3.16±0.02
Steel Needle 0.359 0.5 2.5 3.54±0.02
Steel Needle 0.359 1 2.5 3.73±0.06
Steel Needle 0.359 2 2.5 3.65±0.05
Steel Needle 0.359 1 3.1 3.58±0.03
Steel Needle 0.359 1 5 3.15±0.02
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